Summary
Many strongly-correlated phenomena in condensed-matter and high-energy physics, from high-Tc superconductivity to quark confinement, can be described by lattice gauge theories (LGT), field theories invariant under local transformations. The immense computational complexity associated with solving LGT using classical computers hinders progress in these fields, where many questions remain open. Although quantum computers can address these questions more efficiently than classical devices, current quantum hardware is limited in the absence of error correction, complicating the reach of a practical quantum advantage in the near term.
Co-designing both quantum hardware and software tailored to simulate LGT, addressing non-trivial regimes while minimizing experimental resources, is therefore a challenging but timely task. Rydberg atoms in tweezer arrays, which have recently emerged as a powerful quantum simulation platform, offer unique capabilities that can be harnessed in this direction. On the one hand, the strong Rydberg interaction and the associated blockade mechanism naturally leads to emergent local symmetries. On the other hand, the possibility of controlling many internal atomic states as well as using fermionic atoms allows to locally encode and simulate non-abelian gauge fields and fermionic matter fields, respectively, minimizing resource overheads.
PROGRAM will investigate this hardware-efficient approach and develop quantum simulation protocols for LGT using Rydberg atom arrays, focusing on three main challenges: (i) simulating non-equilibrium LGT dynamics in 2D, and (ii) implementing non-abelian gauge symmetries, as well as (iii) fermionic matter fields, in a scalable manner. The Researcher will design these protocols using both analog, digital and variational near-term resources, benchmark them in the presence of experimental errors, and run some of them using existing quantum hardware.
Co-designing both quantum hardware and software tailored to simulate LGT, addressing non-trivial regimes while minimizing experimental resources, is therefore a challenging but timely task. Rydberg atoms in tweezer arrays, which have recently emerged as a powerful quantum simulation platform, offer unique capabilities that can be harnessed in this direction. On the one hand, the strong Rydberg interaction and the associated blockade mechanism naturally leads to emergent local symmetries. On the other hand, the possibility of controlling many internal atomic states as well as using fermionic atoms allows to locally encode and simulate non-abelian gauge fields and fermionic matter fields, respectively, minimizing resource overheads.
PROGRAM will investigate this hardware-efficient approach and develop quantum simulation protocols for LGT using Rydberg atom arrays, focusing on three main challenges: (i) simulating non-equilibrium LGT dynamics in 2D, and (ii) implementing non-abelian gauge symmetries, as well as (iii) fermionic matter fields, in a scalable manner. The Researcher will design these protocols using both analog, digital and variational near-term resources, benchmark them in the presence of experimental errors, and run some of them using existing quantum hardware.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101150724 |
Start date: | 01-11-2024 |
End date: | 30-04-2027 |
Total budget - Public funding: | - 216 699,00 Euro |
Cordis data
Original description
Many strongly-correlated phenomena in condensed-matter and high-energy physics, from high-Tc superconductivity to quark confinement, can be described by lattice gauge theories (LGT), field theories invariant under local transformations. The immense computational complexity associated with solving LGT using classical computers hinders progress in these fields, where many questions remain open. Although quantum computers can address these questions more efficiently than classical devices, current quantum hardware is limited in the absence of error correction, complicating the reach of a practical quantum advantage in the near term.Co-designing both quantum hardware and software tailored to simulate LGT, addressing non-trivial regimes while minimizing experimental resources, is therefore a challenging but timely task. Rydberg atoms in tweezer arrays, which have recently emerged as a powerful quantum simulation platform, offer unique capabilities that can be harnessed in this direction. On the one hand, the strong Rydberg interaction and the associated blockade mechanism naturally leads to emergent local symmetries. On the other hand, the possibility of controlling many internal atomic states as well as using fermionic atoms allows to locally encode and simulate non-abelian gauge fields and fermionic matter fields, respectively, minimizing resource overheads.
PROGRAM will investigate this hardware-efficient approach and develop quantum simulation protocols for LGT using Rydberg atom arrays, focusing on three main challenges: (i) simulating non-equilibrium LGT dynamics in 2D, and (ii) implementing non-abelian gauge symmetries, as well as (iii) fermionic matter fields, in a scalable manner. The Researcher will design these protocols using both analog, digital and variational near-term resources, benchmark them in the presence of experimental errors, and run some of them using existing quantum hardware.
Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
24-11-2024
Images
No images available.
Geographical location(s)