ORCHID | ORCHID: Organic Reactions through Carbon addition to H2 on Interstellar Dust grains

Summary
The recent progress in astrochemical studies of the molecular makeup of the Interstellar Medium (ISM) has revolutionized our understanding of the early phases of star and planet formation. A significant gap, however, still exists and that involves the role of molecular hydrogen (H2)—the most abundant molecule in the universe—in interstellar ice chemistry. ORCHID aims to fill this gap by investigating the impact of H2 on the formation and evolution of complex organic molecules (iCOMs) in the ISM. Given the lack of existing literature detailing solid-state reaction pathways incorporating H2, ORCHID hypothesizes that H2 reactions with carbon atoms is instrumental in unexplored chemical pathways for iCOMs formation. To achieve its objectives, ORCHID uses state-of-the-art experimental setups to produce quantitative data that aligns with the latest observations of interstellar ices from the James Webb Space Telescope (JWST) and gas-phase observations from radio-telescopes like the Atacama Large Millimeter/submillimeter Array (ALMA). Specifically, the project: (1) explores iCOMs formation through previously overlooked pathways involving H2, completing and extending reaction networks in the ISM; (2) generates accurate parameters for astrochemical models, facilitating simulations that match observations of star- and planet-forming regions; (3) investigates the conditions under which iCOMs are released into the gas phase, especially at temperatures where thermal desorption is not feasible in the ISM. The insights and data generated by ORCHID will serve as a robust foundation for interpreting ongoing and future astronomical observations. Moreover, the project will enrich existing gas-grain kinetic models, effectively bridging the grain-gas gap and thereby advancing our understanding of how chemical processes in the ISM influence the composition of celestial bodies in star- and planet-forming regions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101153804
Start date: 01-06-2024
End date: 31-05-2026
Total budget - Public funding: - 187 624,00 Euro
Cordis data

Original description

The recent progress in astrochemical studies of the molecular makeup of the Interstellar Medium (ISM) has revolutionized our understanding of the early phases of star and planet formation. A significant gap, however, still exists and that involves the role of molecular hydrogen (H2)—the most abundant molecule in the universe—in interstellar ice chemistry. ORCHID aims to fill this gap by investigating the impact of H2 on the formation and evolution of complex organic molecules (iCOMs) in the ISM. Given the lack of existing literature detailing solid-state reaction pathways incorporating H2, ORCHID hypothesizes that H2 reactions with carbon atoms is instrumental in unexplored chemical pathways for iCOMs formation. To achieve its objectives, ORCHID uses state-of-the-art experimental setups to produce quantitative data that aligns with the latest observations of interstellar ices from the James Webb Space Telescope (JWST) and gas-phase observations from radio-telescopes like the Atacama Large Millimeter/submillimeter Array (ALMA). Specifically, the project: (1) explores iCOMs formation through previously overlooked pathways involving H2, completing and extending reaction networks in the ISM; (2) generates accurate parameters for astrochemical models, facilitating simulations that match observations of star- and planet-forming regions; (3) investigates the conditions under which iCOMs are released into the gas phase, especially at temperatures where thermal desorption is not feasible in the ISM. The insights and data generated by ORCHID will serve as a robust foundation for interpreting ongoing and future astronomical observations. Moreover, the project will enrich existing gas-grain kinetic models, effectively bridging the grain-gas gap and thereby advancing our understanding of how chemical processes in the ISM influence the composition of celestial bodies in star- and planet-forming regions.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023