MITCOM | High-Performance Millimeter-Wave and Terahertz Components Based on Spoof Surface Plasmon Polaritons for Next-Generation Communications

Summary
The millimeter-wave (mmWave) and THz frequency bands hold immense potential for enabling ultra-fast data transmission and unlocking unprecedented bandwidth capabilities, but the RF components and circuits at these high frequencies suffer from relatively-large insertion losses and manufacturing difficulty/inaccuracy. Therefore, this entails researching into a fully-new type of transmission lines able to mitigate the high insertion losses and alleviate fabrication-tolerance issues of RF components. This MITCOM project aims to explore and develop new spoof surface plasmon polariton (SSPP) transmission lines for the design of mmWave and THz components with low insertion losses and their applications in next-generation wireless communications. Specifically, the overarching aim is to obtain SSPP-based mmWave and THz bandpass filters and multiplexers with low losses, low interference, high fabrication tolerance, ease of manufacturing and integration. Firstly, a new type of planar half-spaced SSPP transmission lines for waveguide and on-chip application scenarios will be proposed, and their design methodology will be developed to balance loss, ease of manufacturing and crosstalk issues, serving for E-plane waveguide and on-chip filter design. Then, the strategy for different filter specifications and tolerance levels will be analyzed in the steps of modeling and implementation through particular manufacturing technologies. Based on the design methodology and strategy, a series of E-plane waveguide and on-chip filters will be manufactured for validation and industry applications. Finally, based on the newly-conceived planar half-spaced SSPPs, diplexers and triplexers will be also designed, characterized and fabricated. The outcomes of the MITCOM project will contribute to the realization of cost-effective mmWave/THz filter and multiplexer products that potentially increase company profits and propel growth of the 5G/6G communication technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101154110
Start date: 01-09-2024
End date: 31-08-2026
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

The millimeter-wave (mmWave) and THz frequency bands hold immense potential for enabling ultra-fast data transmission and unlocking unprecedented bandwidth capabilities, but the RF components and circuits at these high frequencies suffer from relatively-large insertion losses and manufacturing difficulty/inaccuracy. Therefore, this entails researching into a fully-new type of transmission lines able to mitigate the high insertion losses and alleviate fabrication-tolerance issues of RF components. This MITCOM project aims to explore and develop new spoof surface plasmon polariton (SSPP) transmission lines for the design of mmWave and THz components with low insertion losses and their applications in next-generation wireless communications. Specifically, the overarching aim is to obtain SSPP-based mmWave and THz bandpass filters and multiplexers with low losses, low interference, high fabrication tolerance, ease of manufacturing and integration. Firstly, a new type of planar half-spaced SSPP transmission lines for waveguide and on-chip application scenarios will be proposed, and their design methodology will be developed to balance loss, ease of manufacturing and crosstalk issues, serving for E-plane waveguide and on-chip filter design. Then, the strategy for different filter specifications and tolerance levels will be analyzed in the steps of modeling and implementation through particular manufacturing technologies. Based on the design methodology and strategy, a series of E-plane waveguide and on-chip filters will be manufactured for validation and industry applications. Finally, based on the newly-conceived planar half-spaced SSPPs, diplexers and triplexers will be also designed, characterized and fabricated. The outcomes of the MITCOM project will contribute to the realization of cost-effective mmWave/THz filter and multiplexer products that potentially increase company profits and propel growth of the 5G/6G communication technology.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

15-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023