Summary
The reach of biological electron transport (ET) increased from nm to cm with the discovery of cable bacteria that do ET via highly conductive fibres along their filaments. Their extremely long distance ET electrically connects 1000s of cells and influences redox cycling. Other bacteria interact with this electric highway via interspecies ET. A visual version: flocking, where aerobes use cables to breathe oxygen in its absence. Flockers dump electrons on intermediates, electron shuttles, which cables recycle. Since their discovery, cable bacteria sparked interest for green, biodegradable electronics. Flocking suggests that we can access the electric fibre without damaging it. Cables must have a natural electric entryway, to upload electrons from shuttles onto the fibres. ENTER aims to map this.
We combine Prof Meysman's expertise on cable bacteria fibres with mine on flocker-cable bacteria interactions to:
1) Identify the electron shuttle by extensive electrochemical characterization of flockers (isolated in my PhD), map their ability to generate electricity, and find shuttle production potential in the genomes.
2) Advance models to find entryway protein sequences in closed cable bacteria genomes (from the host).
3) Localize the entryways on the filament and activate them using correlative light and electron microscopy with labelled shuttles and Raman microscopy.
ENTER will provide new insights into the functioning of electric ecosystems and electric microbes. It will offer novel perspectives on redox and electron flow in natural systems. For example, oxygen breathing way beyond its presence will affect CO2 burying and sequestration in the seafloor. ENTERs impact, not limited to natural systems, will also inspire new insights for engineered systems (microbial fuel cells, contaminant biodegradation). It could provide critical stepping stones for promising alternatives in new green electronics. ENTER connects many disciplines, that it will influence and inspire.
We combine Prof Meysman's expertise on cable bacteria fibres with mine on flocker-cable bacteria interactions to:
1) Identify the electron shuttle by extensive electrochemical characterization of flockers (isolated in my PhD), map their ability to generate electricity, and find shuttle production potential in the genomes.
2) Advance models to find entryway protein sequences in closed cable bacteria genomes (from the host).
3) Localize the entryways on the filament and activate them using correlative light and electron microscopy with labelled shuttles and Raman microscopy.
ENTER will provide new insights into the functioning of electric ecosystems and electric microbes. It will offer novel perspectives on redox and electron flow in natural systems. For example, oxygen breathing way beyond its presence will affect CO2 burying and sequestration in the seafloor. ENTERs impact, not limited to natural systems, will also inspire new insights for engineered systems (microbial fuel cells, contaminant biodegradation). It could provide critical stepping stones for promising alternatives in new green electronics. ENTER connects many disciplines, that it will influence and inspire.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101152850 |
Start date: | 01-04-2024 |
End date: | 31-03-2026 |
Total budget - Public funding: | - 175 920,00 Euro |
Cordis data
Original description
The reach of biological electron transport (ET) increased from nm to cm with the discovery of cable bacteria that do ET via highly conductive fibres along their filaments. Their extremely long distance ET electrically connects 1000s of cells and influences redox cycling. Other bacteria interact with this electric highway via interspecies ET. A visual version: flocking, where aerobes use cables to breathe oxygen in its absence. Flockers dump electrons on intermediates, electron shuttles, which cables recycle. Since their discovery, cable bacteria sparked interest for green, biodegradable electronics. Flocking suggests that we can access the electric fibre without damaging it. Cables must have a natural electric entryway, to upload electrons from shuttles onto the fibres. ENTER aims to map this.We combine Prof Meysman's expertise on cable bacteria fibres with mine on flocker-cable bacteria interactions to:
1) Identify the electron shuttle by extensive electrochemical characterization of flockers (isolated in my PhD), map their ability to generate electricity, and find shuttle production potential in the genomes.
2) Advance models to find entryway protein sequences in closed cable bacteria genomes (from the host).
3) Localize the entryways on the filament and activate them using correlative light and electron microscopy with labelled shuttles and Raman microscopy.
ENTER will provide new insights into the functioning of electric ecosystems and electric microbes. It will offer novel perspectives on redox and electron flow in natural systems. For example, oxygen breathing way beyond its presence will affect CO2 burying and sequestration in the seafloor. ENTERs impact, not limited to natural systems, will also inspire new insights for engineered systems (microbial fuel cells, contaminant biodegradation). It could provide critical stepping stones for promising alternatives in new green electronics. ENTER connects many disciplines, that it will influence and inspire.
Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
22-11-2024
Images
No images available.
Geographical location(s)