Summary
Establishing a sustainable supply chain for raw materials is a must for creating an industrial ecosystem aligned with the goals of the European Green Deal, which emphasizes energy conservation and reducing environmental costs in primary production. Elements such as Al, Si, Mg, Ce, La, Eu, Y, and Tb have been included in the EU's strategic and/or critical material lists due to their economic significance and high supply risk. The recycling rate of these strategic and/or critical materials is low because supplied scrap and End-of-Life (EoL) products, such as Zorba scrap, solar cells, light metal scraps/chips, Si-kerf, glass polishing powders, and fluorescent lamp waste, contain a mixture of various metals. Estimations show that the amount of Al scrap will rise to approximately 125,000 metric tons per year by 2035 and 246,000 metric tons per year by 2050. Additionally, projections anticipate that End-of-Life (EoL) solar panels will amount to 1.7 to 8 million tons by 2030, with this growth expected to increase to 60 to 77 million tons by 2050. However, the complex structures of scraps/EoL products, containing a wide range of elements, pose significant challenges for the recycling process of these metals. Waste2Space aims to develop a holistic recycling process for mixed scraps/EoL products, ensuring the mix to be a benefit rather than an obstacle. A straightforward and cost-effective approach to utilizing mixed scraps and EoL products will be developed with the aim of producing CCAs for the aerospace and automotive industries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101154933 |
Start date: | 01-09-2024 |
End date: | 31-08-2026 |
Total budget - Public funding: | - 226 751,00 Euro |
Cordis data
Original description
Establishing a sustainable supply chain for raw materials is a must for creating an industrial ecosystem aligned with the goals of the European Green Deal, which emphasizes energy conservation and reducing environmental costs in primary production. Elements such as Al, Si, Mg, Ce, La, Eu, Y, and Tb have been included in the EU's strategic and/or critical material lists due to their economic significance and high supply risk. The recycling rate of these strategic and/or critical materials is low because supplied scrap and End-of-Life (EoL) products, such as Zorba scrap, solar cells, light metal scraps/chips, Si-kerf, glass polishing powders, and fluorescent lamp waste, contain a mixture of various metals. Estimations show that the amount of Al scrap will rise to approximately 125,000 metric tons per year by 2035 and 246,000 metric tons per year by 2050. Additionally, projections anticipate that End-of-Life (EoL) solar panels will amount to 1.7 to 8 million tons by 2030, with this growth expected to increase to 60 to 77 million tons by 2050. However, the complex structures of scraps/EoL products, containing a wide range of elements, pose significant challenges for the recycling process of these metals. Waste2Space aims to develop a holistic recycling process for mixed scraps/EoL products, ensuring the mix to be a benefit rather than an obstacle. A straightforward and cost-effective approach to utilizing mixed scraps and EoL products will be developed with the aim of producing CCAs for the aerospace and automotive industries.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
26-11-2024
Images
No images available.
Geographical location(s)