Summary
Neurological diseases, such as Parkinson’s Disease (PD), are the leading cause of disability in the world. The role of brain rhythms has not been completely understood but evidence suggest that specific motor disorders may be linked to abnormal brain oscillations. Researching ways to modulate specific cortical motor rhythms could lead to discovering more effective approaches to treat patients with neurological disorders affecting their motor condition. However, our current understanding tools are insufficient to access and interact with this kind of neural activity. Non-invasive neuromodulation protocols such as transcutaneous Spinal Cord Stimulation (tSCS) are raising interest in recent years to induce changes in the Central Nervous System (CNS) that can lead to functional improvement, while the side effects and applicability limitations of invasive procedures are overcome. Better understanding the interaction between neuromodulation protocols and brain rhythms is crucial for the development of interventions targeting pathological circuits which can favour plastic changes and the restoration of impaired motor functions. In RhytMods, I will develop a non-invasive neuromodulation platform to apply closed-loop stimulation protocols synchronized with brain oscillations decoded from the periphery with muscle recordings (high-density electromyography, HD-EMG). The platform will allow to explore the modulatory effects of brain-oscillations-dependent stimulation of the CNS to treat motor symptoms and its potential to entrain and disrupt neural oscillations linked to motor recovery in patients with PD. This research has the potential to transform our understanding of neurological disorders with pathological brain oscillations and to develop new minimally invasive and cost-effective technologies to treat the motor symptoms in neural disorders.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101151398 |
Start date: | 01-01-2025 |
End date: | 31-12-2026 |
Total budget - Public funding: | - 165 312,00 Euro |
Cordis data
Original description
Neurological diseases, such as Parkinson’s Disease (PD), are the leading cause of disability in the world. The role of brain rhythms has not been completely understood but evidence suggest that specific motor disorders may be linked to abnormal brain oscillations. Researching ways to modulate specific cortical motor rhythms could lead to discovering more effective approaches to treat patients with neurological disorders affecting their motor condition. However, our current understanding tools are insufficient to access and interact with this kind of neural activity. Non-invasive neuromodulation protocols such as transcutaneous Spinal Cord Stimulation (tSCS) are raising interest in recent years to induce changes in the Central Nervous System (CNS) that can lead to functional improvement, while the side effects and applicability limitations of invasive procedures are overcome. Better understanding the interaction between neuromodulation protocols and brain rhythms is crucial for the development of interventions targeting pathological circuits which can favour plastic changes and the restoration of impaired motor functions. In RhytMods, I will develop a non-invasive neuromodulation platform to apply closed-loop stimulation protocols synchronized with brain oscillations decoded from the periphery with muscle recordings (high-density electromyography, HD-EMG). The platform will allow to explore the modulatory effects of brain-oscillations-dependent stimulation of the CNS to treat motor symptoms and its potential to entrain and disrupt neural oscillations linked to motor recovery in patients with PD. This research has the potential to transform our understanding of neurological disorders with pathological brain oscillations and to develop new minimally invasive and cost-effective technologies to treat the motor symptoms in neural disorders.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
24-11-2024
Images
No images available.
Geographical location(s)