SMART-NRG | Solutions for constructions and bulding MAteRials based on The eNeRGy absorption

Summary
Energy efficiency in buildings is a critical aspect of addressing climate change and reducing greenhouse gas emissions. To contribute to this endeavor, our research project focuses on the development and optimization of phase change materials (PCMs) derived from biomass as a sustainable solution for thermal energy storage in buildings. PCMs have shown promise in enhancing energy efficiency by storing and releasing thermal energy as they undergo phase transitions. However, challenges such as low thermal conductivity and leakage have limited their widespread application, especially in construction materials. Our project seeks to address these challenges by exploring the use of natural biomass materials, such as plant fibers, wood particles, endocarps, and husks, as containers for PCMs. These lignocellulosic materials possess unique properties, including high deformation capacity and porosity, which make them promising candidates for effectively containing and activating PCMs. By utilizing biomass as PCM containers, we aim to improve the thermal performance of building materials, reducing energy consumption and greenhouse gas emissions. To achieve our objectives, we will conduct a comprehensive research program that includes experimental testing, numerical simulations, and optimization techniques.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101153320
Start date: 01-03-2025
End date: 28-02-2026
Total budget - Public funding: - 94 295,00 Euro
Cordis data

Original description

Energy efficiency in buildings is a critical aspect of addressing climate change and reducing greenhouse gas emissions. To contribute to this endeavor, our research project focuses on the development and optimization of phase change materials (PCMs) derived from biomass as a sustainable solution for thermal energy storage in buildings. PCMs have shown promise in enhancing energy efficiency by storing and releasing thermal energy as they undergo phase transitions. However, challenges such as low thermal conductivity and leakage have limited their widespread application, especially in construction materials. Our project seeks to address these challenges by exploring the use of natural biomass materials, such as plant fibers, wood particles, endocarps, and husks, as containers for PCMs. These lignocellulosic materials possess unique properties, including high deformation capacity and porosity, which make them promising candidates for effectively containing and activating PCMs. By utilizing biomass as PCM containers, we aim to improve the thermal performance of building materials, reducing energy consumption and greenhouse gas emissions. To achieve our objectives, we will conduct a comprehensive research program that includes experimental testing, numerical simulations, and optimization techniques.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

24-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023