Summary
Energy efficiency in buildings is a critical aspect of addressing climate change and reducing greenhouse gas emissions. To contribute to this endeavor, our research project focuses on the development and optimization of phase change materials (PCMs) derived from biomass as a sustainable solution for thermal energy storage in buildings. PCMs have shown promise in enhancing energy efficiency by storing and releasing thermal energy as they undergo phase transitions. However, challenges such as low thermal conductivity and leakage have limited their widespread application, especially in construction materials. Our project seeks to address these challenges by exploring the use of natural biomass materials, such as plant fibers, wood particles, endocarps, and husks, as containers for PCMs. These lignocellulosic materials possess unique properties, including high deformation capacity and porosity, which make them promising candidates for effectively containing and activating PCMs. By utilizing biomass as PCM containers, we aim to improve the thermal performance of building materials, reducing energy consumption and greenhouse gas emissions. To achieve our objectives, we will conduct a comprehensive research program that includes experimental testing, numerical simulations, and optimization techniques.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101153320 |
Start date: | 01-03-2025 |
End date: | 28-02-2026 |
Total budget - Public funding: | - 94 295,00 Euro |
Cordis data
Original description
Energy efficiency in buildings is a critical aspect of addressing climate change and reducing greenhouse gas emissions. To contribute to this endeavor, our research project focuses on the development and optimization of phase change materials (PCMs) derived from biomass as a sustainable solution for thermal energy storage in buildings. PCMs have shown promise in enhancing energy efficiency by storing and releasing thermal energy as they undergo phase transitions. However, challenges such as low thermal conductivity and leakage have limited their widespread application, especially in construction materials. Our project seeks to address these challenges by exploring the use of natural biomass materials, such as plant fibers, wood particles, endocarps, and husks, as containers for PCMs. These lignocellulosic materials possess unique properties, including high deformation capacity and porosity, which make them promising candidates for effectively containing and activating PCMs. By utilizing biomass as PCM containers, we aim to improve the thermal performance of building materials, reducing energy consumption and greenhouse gas emissions. To achieve our objectives, we will conduct a comprehensive research program that includes experimental testing, numerical simulations, and optimization techniques.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
24-11-2024
Images
No images available.
Geographical location(s)