Summary
The discovery of efficient technologies for mitigation of the rising CO2 level and the associated energy and environmental issues is
the grand challenge of our time. Electrochemical CO2 reduction (eCO2R) is one promising approach to convert CO2 into valuable
products, but the practical realization is still limited by material and system-level challenges. On top of this, the pathway to bring CO2
captured from a point source to an eCO2R site involves energy-intensive, practically difficult intermediate steps often overlooked by
the research community. The BattleCapCO2 project introduces a new pathway to fully integrate CO2 capture and CO2 reduction
(CO2CR) in a unit flow reactor. This will be achieved by a unique design of bipolar membrane-electrode assemblies obtained by
coupled 3D printing and photolithography techniques. An attempt will be done to elucidate the impact of BPM interface
morphologies and electrode surface properties on the efficiency of CO2CR. The conceptual flow reactor design allows for
simultaneous CO2 capture, in situ regeneration, and subsequent electroreduction into useful chemicals, presenting an energy efficient and cost-effective technological solution.
The action will broaden the knowledge and expertise of the researcher through high-quality research training in the field of
carbon capture and utilization, involving multidisciplinary investigation approaches and intersectoral secondments. This will allow
him to expand his professional network with leading scientists in academia and industry from across Europe and the globe, and
acquire key skill sets towards professional independence. The project will provide new technological solutions with a significant
impact on the ambitious Europan green deal aiming to transform EU into a resource-efficient and competitive economy, ensuring a
climate-neutral society.
the grand challenge of our time. Electrochemical CO2 reduction (eCO2R) is one promising approach to convert CO2 into valuable
products, but the practical realization is still limited by material and system-level challenges. On top of this, the pathway to bring CO2
captured from a point source to an eCO2R site involves energy-intensive, practically difficult intermediate steps often overlooked by
the research community. The BattleCapCO2 project introduces a new pathway to fully integrate CO2 capture and CO2 reduction
(CO2CR) in a unit flow reactor. This will be achieved by a unique design of bipolar membrane-electrode assemblies obtained by
coupled 3D printing and photolithography techniques. An attempt will be done to elucidate the impact of BPM interface
morphologies and electrode surface properties on the efficiency of CO2CR. The conceptual flow reactor design allows for
simultaneous CO2 capture, in situ regeneration, and subsequent electroreduction into useful chemicals, presenting an energy efficient and cost-effective technological solution.
The action will broaden the knowledge and expertise of the researcher through high-quality research training in the field of
carbon capture and utilization, involving multidisciplinary investigation approaches and intersectoral secondments. This will allow
him to expand his professional network with leading scientists in academia and industry from across Europe and the globe, and
acquire key skill sets towards professional independence. The project will provide new technological solutions with a significant
impact on the ambitious Europan green deal aiming to transform EU into a resource-efficient and competitive economy, ensuring a
climate-neutral society.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101153662 |
Start date: | 01-03-2025 |
End date: | 31-05-2028 |
Total budget - Public funding: | - 303 776,00 Euro |
Cordis data
Original description
The discovery of efficient technologies for mitigation of the rising CO2 level and the associated energy and environmental issues isthe grand challenge of our time. Electrochemical CO2 reduction (eCO2R) is one promising approach to convert CO2 into valuable
products, but the practical realization is still limited by material and system-level challenges. On top of this, the pathway to bring CO2
captured from a point source to an eCO2R site involves energy-intensive, practically difficult intermediate steps often overlooked by
the research community. The BattleCapCO2 project introduces a new pathway to fully integrate CO2 capture and CO2 reduction
(CO2CR) in a unit flow reactor. This will be achieved by a unique design of bipolar membrane-electrode assemblies obtained by
coupled 3D printing and photolithography techniques. An attempt will be done to elucidate the impact of BPM interface
morphologies and electrode surface properties on the efficiency of CO2CR. The conceptual flow reactor design allows for
simultaneous CO2 capture, in situ regeneration, and subsequent electroreduction into useful chemicals, presenting an energy efficient and cost-effective technological solution.
The action will broaden the knowledge and expertise of the researcher through high-quality research training in the field of
carbon capture and utilization, involving multidisciplinary investigation approaches and intersectoral secondments. This will allow
him to expand his professional network with leading scientists in academia and industry from across Europe and the globe, and
acquire key skill sets towards professional independence. The project will provide new technological solutions with a significant
impact on the ambitious Europan green deal aiming to transform EU into a resource-efficient and competitive economy, ensuring a
climate-neutral society.
Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
18-12-2024
Images
No images available.
Geographical location(s)