DISRUPT | Disorder in ultrafast phase transitions

Summary
"DISRUPT, which stands for ""DISorder in Ultrafast Phase Transitions,"" represents a theoretical physics initiative with the primary aim of harnessing both static and time-dependent disorder to gain full control over ultrafast phase transitions occurring in quantum materials.
A key aspiration within the realm of nonequilibrium physics is to attain the ability to manipulate the properties of quantum materials over time, offering numerous potential applications in high-impact technologies such as ultrafast electronics, probabilistic computing, and quantum computing. However, in experiments where a pump-probe approach is employed, disorder is often viewed as an unwelcome factor that threatens to undermine the vision of achieving complete control over the dynamics of quantum many-body systems through the use of light. Our objective is to challenge this conventional perspective and demonstrate that disorder serves two fundamental purposes: Firstly, it enables us to place the system in nonthermal states that would be otherwise inaccessible under equilibrium conditions (as seen in ultrafast inhomogeneous disordering). Secondly, it allows us to theoretically devise robust mechanisms for preventing the thermalization of quantum systems, with direct implications for quantum memory technology. This dual objective lies at the core of our proposal.
To accomplish these objectives, we plan to implement, for the first time according to our knowledge, an out-of-equilibrium extension of real-space Dynamical Mean Field Theory. This will enable us to investigate both the (absence of) thermalization in correlated electron systems experiencing static quenched disorder (Many-Body Localization) and the ultrafast inhomogeneous disordered transition in vanadium dioxide involving annealed time-dependent disorder."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101149691
Start date: 01-03-2025
End date: 28-02-2027
Total budget - Public funding: - 195 914,00 Euro
Cordis data

Original description

"DISRUPT, which stands for ""DISorder in Ultrafast Phase Transitions,"" represents a theoretical physics initiative with the primary aim of harnessing both static and time-dependent disorder to gain full control over ultrafast phase transitions occurring in quantum materials.
A key aspiration within the realm of nonequilibrium physics is to attain the ability to manipulate the properties of quantum materials over time, offering numerous potential applications in high-impact technologies such as ultrafast electronics, probabilistic computing, and quantum computing. However, in experiments where a pump-probe approach is employed, disorder is often viewed as an unwelcome factor that threatens to undermine the vision of achieving complete control over the dynamics of quantum many-body systems through the use of light. Our objective is to challenge this conventional perspective and demonstrate that disorder serves two fundamental purposes: Firstly, it enables us to place the system in nonthermal states that would be otherwise inaccessible under equilibrium conditions (as seen in ultrafast inhomogeneous disordering). Secondly, it allows us to theoretically devise robust mechanisms for preventing the thermalization of quantum systems, with direct implications for quantum memory technology. This dual objective lies at the core of our proposal.
To accomplish these objectives, we plan to implement, for the first time according to our knowledge, an out-of-equilibrium extension of real-space Dynamical Mean Field Theory. This will enable us to investigate both the (absence of) thermalization in correlated electron systems experiencing static quenched disorder (Many-Body Localization) and the ultrafast inhomogeneous disordered transition in vanadium dioxide involving annealed time-dependent disorder."

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

25-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023