AFILM | Advanced Fast-Ion Loss Measurements at the JT-60SA and ITER tokamaks

Summary
One of the main challenges towards the commercialization of fusion energy is the appropriate confinement of alpha particles in burning plasmas as well as fast ions generated by auxiliary heating systems.
This project contributes to that objective by aiming at the temporal and velocity-space characterization of fast-ion losses in the most advanced tokamak experiments (ITER and JT-60SA).
i) Commissioning of a Fast-Ion Loss Detector (FILD) and its installation at the JT-60SA tokamak, including the synthesis of its scintillator plate, testing of its reciprocating system, optical calibration and assessment of its structural integrity.
ii) Assessing the escaping fast ions generated by the 500keV N-NBI at JT-60SA. These unprecedented time-resolved velocity-space measurements under different regimes of operation will be validated using Hamiltonian full-orbit simulations. Moreover, advanced, first-principle hybrid kinetic-MHD modeling with the MEGA code will be used to reproduce the losses induced by Alfvénic instabilities.
iii) Designing the ITER FILD and developing the technical solutions required to survive the harsh conditions at the ITER first wall. This includes thermo-mechanical assessment of the probe head, a synthetic diagnostic to estimate the signals, and the development of a scintillator plate with tolerable noise and degradation induced by neutrons and gamma radiation.
This action is carried out at the Plasma Science and Fusion Technology group of the University of Seville in close collaboration with the ITER Organization, EUROfusion Consortium and JT-60SA teams. It includes two two-month secondments at QST (Japan) to install and exploit the JT-60SA FILD. Trough the execution of this project, the candidate will be trained to lead a research group of engineers and physicists implementing instrumentation relevant for the commercialization of fusion energy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101146935
Start date: 01-10-2024
End date: 30-09-2026
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

One of the main challenges towards the commercialization of fusion energy is the appropriate confinement of alpha particles in burning plasmas as well as fast ions generated by auxiliary heating systems.
This project contributes to that objective by aiming at the temporal and velocity-space characterization of fast-ion losses in the most advanced tokamak experiments (ITER and JT-60SA).
i) Commissioning of a Fast-Ion Loss Detector (FILD) and its installation at the JT-60SA tokamak, including the synthesis of its scintillator plate, testing of its reciprocating system, optical calibration and assessment of its structural integrity.
ii) Assessing the escaping fast ions generated by the 500keV N-NBI at JT-60SA. These unprecedented time-resolved velocity-space measurements under different regimes of operation will be validated using Hamiltonian full-orbit simulations. Moreover, advanced, first-principle hybrid kinetic-MHD modeling with the MEGA code will be used to reproduce the losses induced by Alfvénic instabilities.
iii) Designing the ITER FILD and developing the technical solutions required to survive the harsh conditions at the ITER first wall. This includes thermo-mechanical assessment of the probe head, a synthetic diagnostic to estimate the signals, and the development of a scintillator plate with tolerable noise and degradation induced by neutrons and gamma radiation.
This action is carried out at the Plasma Science and Fusion Technology group of the University of Seville in close collaboration with the ITER Organization, EUROfusion Consortium and JT-60SA teams. It includes two two-month secondments at QST (Japan) to install and exploit the JT-60SA FILD. Trough the execution of this project, the candidate will be trained to lead a research group of engineers and physicists implementing instrumentation relevant for the commercialization of fusion energy.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

01-10-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023