Theorist | Time-varying non-Hermitian metamaterials for micro-vibration isolation

Summary
Precision instruments with high performances are highly demanded by both fundamental science and wide applications at different scales. Micro-vibration isolation technology is widely required in order to avoid potential damage of functions. The current vibration control technology mainly includes passive and active control. However, it remains limits in control accuracy and bulk size, which requires to explore new physical mechanisms. Recently, non-Hermitian system and spatiotemporal modulation show great potential in wave control for anomalous properties and provide a promising avenue to address the micro-vibration isolation challenges. Non- Hermitian parameters and time-varying modulation can play additional degrees of freedom to enrich elastic wave-structure interactions. This project focuses on elastic wave propagation in non-Hermitian elastic beams/plates with time-varying modulation for micro-vibration isolation. The project will first conduct an in-depth study on the modeling of time-varying non-Hermitian unit and explore the mechanism of wave isolation with single unit; then study the wave isolation mechanisms from exceptional point with double units and broaden the wave isolation band with multiple units; finally, on-demand inverse design will be developed and experimental validation will be implemented. The proposed time-varying non-Hermitian elastic systems will guide a new direction for the next generation micro-vibration isolation technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101150911
Start date: 01-08-2024
End date: 31-07-2026
Total budget - Public funding: - 189 687,00 Euro
Cordis data

Original description

Precision instruments with high performances are highly demanded by both fundamental science and wide applications at different scales. Micro-vibration isolation technology is widely required in order to avoid potential damage of functions. The current vibration control technology mainly includes passive and active control. However, it remains limits in control accuracy and bulk size, which requires to explore new physical mechanisms. Recently, non-Hermitian system and spatiotemporal modulation show great potential in wave control for anomalous properties and provide a promising avenue to address the micro-vibration isolation challenges. Non- Hermitian parameters and time-varying modulation can play additional degrees of freedom to enrich elastic wave-structure interactions. This project focuses on elastic wave propagation in non-Hermitian elastic beams/plates with time-varying modulation for micro-vibration isolation. The project will first conduct an in-depth study on the modeling of time-varying non-Hermitian unit and explore the mechanism of wave isolation with single unit; then study the wave isolation mechanisms from exceptional point with double units and broaden the wave isolation band with multiple units; finally, on-demand inverse design will be developed and experimental validation will be implemented. The proposed time-varying non-Hermitian elastic systems will guide a new direction for the next generation micro-vibration isolation technology.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

23-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023