VITAL | Cost-effectiVe materIals for susTainAble eLectrolyzers

Summary
Electrolysis technologies are pivotal in accelerating the transition from fossil fuels to renewable energy. Among them, proton exchange membrane (PEM) electrolyzers, currently stand at an installed capacity of 0.92 GW and continue to grow, in view of their desirable performance traits such as high operating currents and fast response.

However, their reliance on perfluorinated materials such as Poly(Trifluoroethenesulfonyl Fluoride) (C2F4O2S)n for core parts (membrane and catalyst binder), and critical raw materials (iridium and platinum for catalysts), raises environmental concerns due to the recycling challenges of forever chemicals –the EU weighs a complete ban for forever chemicals such as Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), and cost. The reliance on noble metal catalysts, especially iridium, does not contribute to high capital costs, but poses scalability concerns due to the extremely limited availability of iridium. Overall, these hinder the sustainability prospects of PEM technologies at scale, and their widespread commercialization. These underscore the pressing need for innovative strategies to realize sustainable and efficient electrolyzers.

VITAL (Cost-effectiVe materIals for susTainAble eLectrolyzers) addresses these challenges through the development of novel, fluorine-free membranes, integrated with cost-effective, non-critical raw materials. VITAL aims to demonstrate electrolyzer systems for H2 generation which combine sustainable scalability and performance. VITAL innovation relies on the development of fluorine-free membrane electrode assemblies, implemented through a recyclable olefin polymer membrane paired with in situ grown catalysts; free of platinum group metals (PGMs), and designed to achieve competitive performance for H2 electrosynthesis. This project addresses the need for scalable and sustainable electrolysis, vital in the shift towards renewable energy sources, and reducing fossil fuel dependency.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101150688
Start date: 01-04-2024
End date: 31-03-2026
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

Electrolysis technologies are pivotal in accelerating the transition from fossil fuels to renewable energy. Among them, proton exchange membrane (PEM) electrolyzers, currently stand at an installed capacity of 0.92 GW and continue to grow, in view of their desirable performance traits such as high operating currents and fast response.

However, their reliance on perfluorinated materials such as Poly(Trifluoroethenesulfonyl Fluoride) (C2F4O2S)n for core parts (membrane and catalyst binder), and critical raw materials (iridium and platinum for catalysts), raises environmental concerns due to the recycling challenges of forever chemicals –the EU weighs a complete ban for forever chemicals such as Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), and cost. The reliance on noble metal catalysts, especially iridium, does not contribute to high capital costs, but poses scalability concerns due to the extremely limited availability of iridium. Overall, these hinder the sustainability prospects of PEM technologies at scale, and their widespread commercialization. These underscore the pressing need for innovative strategies to realize sustainable and efficient electrolyzers.

VITAL (Cost-effectiVe materIals for susTainAble eLectrolyzers) addresses these challenges through the development of novel, fluorine-free membranes, integrated with cost-effective, non-critical raw materials. VITAL aims to demonstrate electrolyzer systems for H2 generation which combine sustainable scalability and performance. VITAL innovation relies on the development of fluorine-free membrane electrode assemblies, implemented through a recyclable olefin polymer membrane paired with in situ grown catalysts; free of platinum group metals (PGMs), and designed to achieve competitive performance for H2 electrosynthesis. This project addresses the need for scalable and sustainable electrolysis, vital in the shift towards renewable energy sources, and reducing fossil fuel dependency.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023