SUPER-QD | Superlattices of Perovskite Quantum-Dots for the Digital-age

Summary
Photonic integrated chips are key for the EU’s pursuit of faster and more efficient computers, aiming to support the Digital Revolution while reducing the costs of ICT. However, progress in photonic devices is held back by challenges in the miniaturization of on-chip light sources. SUPER-QD aims to tackle these challenges by using Superlattices of lead halide perovskite Quantum Dots as micron-size on-chip emitters. Thanks to their color-tunable and bright fluorescence, these nanocrystals solids are efficient micron-size light down-converters, that will allow implementing more color channels per device without compromising miniaturization. Moreover, the coupling between quantum dots results in superior exciton mobility and emission from collective quantum states (superfluorescence), which are promising for future applications in transceivers and quantum computers. SUPER-QD comprises four tasks: 1) Quantum Dots prepared via wet chemistry are assembled into Superlattices with tunable structure. 2) Innovative diffraction techniques are employed to characterize Superlattices, with a focus on structural and energetic disorder. 3) Collective optical properties are studied via space- and time-resolved spectroscopies to discover new structure-coupling relations, with the goal of tuning the Superlattices quantum light emission through their structure. 4) Finally, Superlattices with optimized properties will be installed in Integrated Photonic Chips, to demonstrate on-chip down-converting optical amplification upon photoexcitation from an integrated blue laser. These proof-of-concept devices will create new connections between colloidal nanomaterials and photonic integrated chips, leading to groundbreaking advancements in both fields. SUPER-QD will be hosted by Lund University and the Massachusetts Institute of Technology, leveraging the Fellows’ and Host Institutions’ expertise to ensure a mutual benefit from the Action and the success of the ambitious goals of the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101148934
Start date: 01-03-2025
End date: 29-02-2028
Total budget - Public funding: - 282 168,00 Euro
Cordis data

Original description

Photonic integrated chips are key for the EU’s pursuit of faster and more efficient computers, aiming to support the Digital Revolution while reducing the costs of ICT. However, progress in photonic devices is held back by challenges in the miniaturization of on-chip light sources. SUPER-QD aims to tackle these challenges by using Superlattices of lead halide perovskite Quantum Dots as micron-size on-chip emitters. Thanks to their color-tunable and bright fluorescence, these nanocrystals solids are efficient micron-size light down-converters, that will allow implementing more color channels per device without compromising miniaturization. Moreover, the coupling between quantum dots results in superior exciton mobility and emission from collective quantum states (superfluorescence), which are promising for future applications in transceivers and quantum computers. SUPER-QD comprises four tasks: 1) Quantum Dots prepared via wet chemistry are assembled into Superlattices with tunable structure. 2) Innovative diffraction techniques are employed to characterize Superlattices, with a focus on structural and energetic disorder. 3) Collective optical properties are studied via space- and time-resolved spectroscopies to discover new structure-coupling relations, with the goal of tuning the Superlattices quantum light emission through their structure. 4) Finally, Superlattices with optimized properties will be installed in Integrated Photonic Chips, to demonstrate on-chip down-converting optical amplification upon photoexcitation from an integrated blue laser. These proof-of-concept devices will create new connections between colloidal nanomaterials and photonic integrated chips, leading to groundbreaking advancements in both fields. SUPER-QD will be hosted by Lund University and the Massachusetts Institute of Technology, leveraging the Fellows’ and Host Institutions’ expertise to ensure a mutual benefit from the Action and the success of the ambitious goals of the project.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023