Summary
G-TScon2D delves into the exciting realm of superconducting (SC) twistronics, where the manipulation of the twist angle between the layers has opened up new avenues for investigating unconventional superconductivity, quantum transport, and emergent phenomena. A significant research gap exists in understanding and harnessing the unique properties of twisted 2D SC materials. G-TScon2D will bridge the scientific gap through a correlated experimental and simulation approach. Its technological advantage lies behind the inherent SC nature of the planned materials, which is expected to lead to higher operating temperature, a critical condition in quantum computing application. The primary objectives of G-TScon2D are to unravel the quantum phenomena and electronic states that arise from stacking and twisting SC layers at precise angles and to explore the SC-to-insulating switching properties by applying vertical gate field. G-TScon2D is a multidisciplinary project in nature and includes the development of 2D SC twisted device fabrication and carrier transport characterisation. G-TScon2D will benefit from close collaboration with a simulation team in the host, which will provide insight into the properties of twisted SC structures and the impact of gate field on those properties. Discoveries in 2D SC materials will accelerate the development of quantum technologies within the EU Quantum and Graphene flagships goal: “Turn Wonder into Action”. G-TScon2D contributes to expanding Europe’s leadership and excellence in this research area, to starting a competitive European industry in Quantum Technologies, and to making Europe a dynamic and attractive region for innovative research, business and investments in this field. This Fellowship will help me to improve my scientific, transferable, and leadership skills. Such skills will assist me in achieving my primary goal of becoming an independent research leader, and improving my employability in academia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101153933 |
Start date: | 14-09-2024 |
End date: | 13-09-2026 |
Total budget - Public funding: | - 215 534,00 Euro |
Cordis data
Original description
G-TScon2D delves into the exciting realm of superconducting (SC) twistronics, where the manipulation of the twist angle between the layers has opened up new avenues for investigating unconventional superconductivity, quantum transport, and emergent phenomena. A significant research gap exists in understanding and harnessing the unique properties of twisted 2D SC materials. G-TScon2D will bridge the scientific gap through a correlated experimental and simulation approach. Its technological advantage lies behind the inherent SC nature of the planned materials, which is expected to lead to higher operating temperature, a critical condition in quantum computing application. The primary objectives of G-TScon2D are to unravel the quantum phenomena and electronic states that arise from stacking and twisting SC layers at precise angles and to explore the SC-to-insulating switching properties by applying vertical gate field. G-TScon2D is a multidisciplinary project in nature and includes the development of 2D SC twisted device fabrication and carrier transport characterisation. G-TScon2D will benefit from close collaboration with a simulation team in the host, which will provide insight into the properties of twisted SC structures and the impact of gate field on those properties. Discoveries in 2D SC materials will accelerate the development of quantum technologies within the EU Quantum and Graphene flagships goal: “Turn Wonder into Action”. G-TScon2D contributes to expanding Europe’s leadership and excellence in this research area, to starting a competitive European industry in Quantum Technologies, and to making Europe a dynamic and attractive region for innovative research, business and investments in this field. This Fellowship will help me to improve my scientific, transferable, and leadership skills. Such skills will assist me in achieving my primary goal of becoming an independent research leader, and improving my employability in academia.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
25-11-2024
Images
No images available.
Geographical location(s)