DCMH | Development of a new generation detailed hydrogen combustion mechanism

Summary
The most promising carbonless fuels are hydrogen and H2/NH3 mixtures. Burners, reciprocating engines and gas turbines using these fuels can be designed by computational fluid dynamics (CFD) tools, provided that an accurate chemical submodel (detailed reaction mechanism) is available. A comprehensive collection of hydrogen combustion experimental data was created 10 years ago by the hosting laboratory and published on the ReSpecTh.hu website. The initial aim of the project is to extend this data collection with all newly published experimental data. Also, further types of laboratory measurement results, like extinction limits will be added to the database. Then, a new base chemical kinetics mechanism for hydrogen combustion is set up, that uses the latest directly measured and theoretically calculated rate coefficients of the H/O system, and also takes into account the newly proposed mechanistic approaches, like new third-body efficiency parameters and a non-linear mixing model for these parameters, new diffusion parameters, and reactive termolecular reactions. The base model will be optimized using the updated data collection. The base model, the optimized model and all recently published hydrogen combustion mechanisms will be tested together using the whole data collection. It is expected that the obtained new generation detailed hydrogen combustion mechanism will provide more accurate simulation results compared to the currently available ones, especially under problematic conditions like high pressure, lean combustion and high water vapour concentration in the initial mixture. This mechanism will be an important ingredient of the CFD design of devices using hydrogen and H2/NH3 and H2/natural gas fuel mixtures.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101152035
Start date: 01-06-2024
End date: 31-05-2026
Total budget - Public funding: - 157 622,00 Euro
Cordis data

Original description

The most promising carbonless fuels are hydrogen and H2/NH3 mixtures. Burners, reciprocating engines and gas turbines using these fuels can be designed by computational fluid dynamics (CFD) tools, provided that an accurate chemical submodel (detailed reaction mechanism) is available. A comprehensive collection of hydrogen combustion experimental data was created 10 years ago by the hosting laboratory and published on the ReSpecTh.hu website. The initial aim of the project is to extend this data collection with all newly published experimental data. Also, further types of laboratory measurement results, like extinction limits will be added to the database. Then, a new base chemical kinetics mechanism for hydrogen combustion is set up, that uses the latest directly measured and theoretically calculated rate coefficients of the H/O system, and also takes into account the newly proposed mechanistic approaches, like new third-body efficiency parameters and a non-linear mixing model for these parameters, new diffusion parameters, and reactive termolecular reactions. The base model will be optimized using the updated data collection. The base model, the optimized model and all recently published hydrogen combustion mechanisms will be tested together using the whole data collection. It is expected that the obtained new generation detailed hydrogen combustion mechanism will provide more accurate simulation results compared to the currently available ones, especially under problematic conditions like high pressure, lean combustion and high water vapour concentration in the initial mixture. This mechanism will be an important ingredient of the CFD design of devices using hydrogen and H2/NH3 and H2/natural gas fuel mixtures.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

18-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023