RAPID-AFM | Real Time 2D Polymerization studied using Atomic Force Microscopy

Summary
Two-dimensional polymers are a crucial category of low-dimensional materials that have garnered significant attention from both academia and industry. Despite the synthesis of various types of 2D-COFs reported in the literature, there remains a significant gap in our fundamental understanding of their nucleation and growth mechanism on the surfaces. High-Speed atomic force microscopy (HS-AFM) offers the potential to observe molecular processes in real-time, providing valuable insights into single-molecule dynamics. This project aims to develop scientific and technical methodologies for investigating 2D polymerization processes using HS-AFM on solid surfaces. I target the acquisition of qualitative as well as quantitative data in relation to the nucleation, growth and ripening phenomena transpiring during 2D polymerization. This research will shed light on numerous unknown aspects of dynamic covalent chemical reactions occurring on solid surfaces, which often differ substantially from those in solution or bulk. Complementary techniques such as XPS and AFM-IR will be employed to chemically characterize the material. This comprehensive approach will enhance our understanding of surface-based 2D COF design. The quantitative insight obtained into the 2D polymerization processes will be used to fabricate large domains of defect-free polymer films on various surfaces such as SLG-Si/SiO2, h-BN and mica. The high quality polymer films formed on dielectric substrates would pave way for the direct characterization of their electrical properties such as charge carrier mobility.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101154831
Start date: 01-07-2024
End date: 30-06-2026
Total budget - Public funding: - 191 760,00 Euro
Cordis data

Original description

Two-dimensional polymers are a crucial category of low-dimensional materials that have garnered significant attention from both academia and industry. Despite the synthesis of various types of 2D-COFs reported in the literature, there remains a significant gap in our fundamental understanding of their nucleation and growth mechanism on the surfaces. High-Speed atomic force microscopy (HS-AFM) offers the potential to observe molecular processes in real-time, providing valuable insights into single-molecule dynamics. This project aims to develop scientific and technical methodologies for investigating 2D polymerization processes using HS-AFM on solid surfaces. I target the acquisition of qualitative as well as quantitative data in relation to the nucleation, growth and ripening phenomena transpiring during 2D polymerization. This research will shed light on numerous unknown aspects of dynamic covalent chemical reactions occurring on solid surfaces, which often differ substantially from those in solution or bulk. Complementary techniques such as XPS and AFM-IR will be employed to chemically characterize the material. This comprehensive approach will enhance our understanding of surface-based 2D COF design. The quantitative insight obtained into the 2D polymerization processes will be used to fabricate large domains of defect-free polymer films on various surfaces such as SLG-Si/SiO2, h-BN and mica. The high quality polymer films formed on dielectric substrates would pave way for the direct characterization of their electrical properties such as charge carrier mobility.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

06-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023