OSII | Unraveling Ocean-Sea Ice Interactions: Numerical Insights into Mixing and Double Diffusion Convection

Summary
The Arctic region has undergone profound transformations in recent decades due to a rapid decline in sea ice extent. These shifts impact the interplay between sea ice, the atmosphere, and the ocean, involving complex thermodynamic and dynamic processes. Understanding these interactions is crucial for addressing the repercussions of Arctic climate change. However, existing models used for climate projections struggle to capture fine-scale processes at the ocean-sea ice boundary, necessitating parametrizations. Unfortunately, these parametrizations are grounded in empirical rather than theoretical foundations, limiting their applicability across diverse ocean conditions. Recent studies highlight the increased role of wind-driven mixing at the ocean-sea ice interface and the lack of studies that include the joint effect of double diffusion convection, two fundamental processes occurring in sea ice-covered regions. The Ocean-Sea Ice Interaction (OSII) project seeks to bridge this critical gap by employing highly efficient direct numerical simulations (DNS). This innovative approach promises a more precise comprehension of ice melting rates and boundary-layer dynamics resulting from the complex interplay of internal waves/tides and double diffusion convection.
The OSII project is committed to:
1) Quantify the influence of tides on double diffusion convection within a homogeneous fluid flow.
2) Explore the interplay between internal waves induced by a wave-maker and double diffusion convection in stratified flows.
3) Enhance the vertical mixing parametrization within the NEMO-SI3 general circulation model through insights derived from DNS outcomes.
OSII will enable the candidate fellow to produce impactful research results for the research community, policymakers, and the public. Moreover, it will provide her with top-tier training from world-renowned institutions in fluid dynamics and oceanography, enhancing her prospects of obtaining a permanent research position.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101150225
Start date: 01-07-2024
End date: 30-06-2026
Total budget - Public funding: - 211 754,00 Euro
Cordis data

Original description

The Arctic region has undergone profound transformations in recent decades due to a rapid decline in sea ice extent. These shifts impact the interplay between sea ice, the atmosphere, and the ocean, involving complex thermodynamic and dynamic processes. Understanding these interactions is crucial for addressing the repercussions of Arctic climate change. However, existing models used for climate projections struggle to capture fine-scale processes at the ocean-sea ice boundary, necessitating parametrizations. Unfortunately, these parametrizations are grounded in empirical rather than theoretical foundations, limiting their applicability across diverse ocean conditions. Recent studies highlight the increased role of wind-driven mixing at the ocean-sea ice interface and the lack of studies that include the joint effect of double diffusion convection, two fundamental processes occurring in sea ice-covered regions. The Ocean-Sea Ice Interaction (OSII) project seeks to bridge this critical gap by employing highly efficient direct numerical simulations (DNS). This innovative approach promises a more precise comprehension of ice melting rates and boundary-layer dynamics resulting from the complex interplay of internal waves/tides and double diffusion convection.
The OSII project is committed to:
1) Quantify the influence of tides on double diffusion convection within a homogeneous fluid flow.
2) Explore the interplay between internal waves induced by a wave-maker and double diffusion convection in stratified flows.
3) Enhance the vertical mixing parametrization within the NEMO-SI3 general circulation model through insights derived from DNS outcomes.
OSII will enable the candidate fellow to produce impactful research results for the research community, policymakers, and the public. Moreover, it will provide her with top-tier training from world-renowned institutions in fluid dynamics and oceanography, enhancing her prospects of obtaining a permanent research position.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

25-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023