EATTS | Entanglement-Assisted Thermoelectric Transport in Quantum Systems

Summary
"In the proposed project ""Entanglement-Assisted Thermoelectric Transport in Quantum Systems"" (EATTS), the European Researcher Dr. Nahual Sobrino, together with Prof. Rosario Fazio at the International Centre for Theoretical Physics (ICTP), will collaborate with international research groups to unveil innovative thermoelectric properties that hold transformative potential for sustainable energy technologies, quantum information science, and the development of advanced quantum materials. The project's objectives will concentrate on the exploration of thermoelectric phenomena mediated by entangled electrons across a variety of quantum systems. A comprehensive theoretical and computational framework will be established to explore and enhance thermoelectric performance in systems where electron entanglement plays a pivotal role. Cutting-edge calculations will be performed using sophisticated theoretical frameworks, including Quantum Master Equations (QME), Hierarchical Equation of Motion (HEOM), and quantum information techniques. This will guide to elucidate the intricate relationship between entanglement, system-environment interactions, and thermoelectric performance in Double Quantum Dots (DQD) and Cooper Pair Splitters (CPS) systems. Moreover, the project aims to extend the scope of Density Functional Theory (DFT) to access to entanglement measures in transport scenarios through the development of extensions of iq-DFT. This will facilitate a more efficient computational description of thermoelectric phenomena under the influence of entangled electrons. Additionally, the thermoelectric and entanglement characteristics of multiple diatomic molecules will be investigated by mapping the system into effective Hamiltonian models. The computational framework developed will advance our understanding and serve as a guide for experimental endeavors by selecting promising materials and parameter regimes."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101148213
Start date: 13-01-2025
End date: 12-01-2027
Total budget - Public funding: - 188 590,00 Euro
Cordis data

Original description

"In the proposed project ""Entanglement-Assisted Thermoelectric Transport in Quantum Systems"" (EATTS), the European Researcher Dr. Nahual Sobrino, together with Prof. Rosario Fazio at the International Centre for Theoretical Physics (ICTP), will collaborate with international research groups to unveil innovative thermoelectric properties that hold transformative potential for sustainable energy technologies, quantum information science, and the development of advanced quantum materials. The project's objectives will concentrate on the exploration of thermoelectric phenomena mediated by entangled electrons across a variety of quantum systems. A comprehensive theoretical and computational framework will be established to explore and enhance thermoelectric performance in systems where electron entanglement plays a pivotal role. Cutting-edge calculations will be performed using sophisticated theoretical frameworks, including Quantum Master Equations (QME), Hierarchical Equation of Motion (HEOM), and quantum information techniques. This will guide to elucidate the intricate relationship between entanglement, system-environment interactions, and thermoelectric performance in Double Quantum Dots (DQD) and Cooper Pair Splitters (CPS) systems. Moreover, the project aims to extend the scope of Density Functional Theory (DFT) to access to entanglement measures in transport scenarios through the development of extensions of iq-DFT. This will facilitate a more efficient computational description of thermoelectric phenomena under the influence of entangled electrons. Additionally, the thermoelectric and entanglement characteristics of multiple diatomic molecules will be investigated by mapping the system into effective Hamiltonian models. The computational framework developed will advance our understanding and serve as a guide for experimental endeavors by selecting promising materials and parameter regimes."

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023