Summary
Existing CO2 capture technologies, such as amine-based absorption and cryogenic distillation, face challenges and problems including high energy requirements, large infrastructure needs, and high costs. These technologies often require significant retrofitting or integration into existing industrial processes, limiting their scalability and commercial viability. In contrast, the utilization of MOFs (Metal-Organic Frameworks) for CO2 capture has garnered significant interest due to the numerous advantages they offer compared to other materials such as high adsorption capacity, selectivity, tunability, regenerability, and potential for direct utilization, making MOFs a promising solution for efficient and effective CO2 capture. However, it is challenging to design MOF materials with extremely high CO2 capture capacity, gas selectivity, and water stability along with moderate regeneration energy as water dissociation causes hydroxyl-poisoning that impairs CO2 sorption by both high temperature and moisture exposure. Additionally, the high energy consumption during blowdown and evacuation steps for the process cycle of MOFs need to be improved to ensure long-term performance. The novelty of this work lies in its ability to strengthen the interaction between CO2 molecules and the MOF structure through an innovative dual activation method, utilizing both N and S atoms. This approach surpasses conventional single-atom activation in MOFs, resulting in enhanced binding. Furthermore, the incorporation of Lewis Base Sites (LBSs) has become increasingly popular for reducing the energy needed for MOF regeneration, consequently improving CO2 binding affinity, selectivity, and reversibility. Advanced thermal modeling will be employed to analyze the dynamic processes of CO2 adsorption/desorption, sweep gas, and dry-out sequences. This modeling considers both the mechanical and chemical properties of the synthesized MOF.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101152151 |
Start date: | 01-10-2024 |
End date: | 30-09-2026 |
Total budget - Public funding: | - 230 774,00 Euro |
Cordis data
Original description
Existing CO2 capture technologies, such as amine-based absorption and cryogenic distillation, face challenges and problems including high energy requirements, large infrastructure needs, and high costs. These technologies often require significant retrofitting or integration into existing industrial processes, limiting their scalability and commercial viability. In contrast, the utilization of MOFs (Metal-Organic Frameworks) for CO2 capture has garnered significant interest due to the numerous advantages they offer compared to other materials such as high adsorption capacity, selectivity, tunability, regenerability, and potential for direct utilization, making MOFs a promising solution for efficient and effective CO2 capture. However, it is challenging to design MOF materials with extremely high CO2 capture capacity, gas selectivity, and water stability along with moderate regeneration energy as water dissociation causes hydroxyl-poisoning that impairs CO2 sorption by both high temperature and moisture exposure. Additionally, the high energy consumption during blowdown and evacuation steps for the process cycle of MOFs need to be improved to ensure long-term performance. The novelty of this work lies in its ability to strengthen the interaction between CO2 molecules and the MOF structure through an innovative dual activation method, utilizing both N and S atoms. This approach surpasses conventional single-atom activation in MOFs, resulting in enhanced binding. Furthermore, the incorporation of Lewis Base Sites (LBSs) has become increasingly popular for reducing the energy needed for MOF regeneration, consequently improving CO2 binding affinity, selectivity, and reversibility. Advanced thermal modeling will be employed to analyze the dynamic processes of CO2 adsorption/desorption, sweep gas, and dry-out sequences. This modeling considers both the mechanical and chemical properties of the synthesized MOF.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
19-12-2024
Images
No images available.
Geographical location(s)