Summary
We are currently witnessing a technological revolution driven by the recent achievements in NISQ devices, which despite their imperfect controllability have already revolutionized our understanding of many-body dynamics and quantum information science. While a lot of effort is spent to minimize the undesirable consequences of dissipation, interactions with the environment can also generate useful quantum behavior. The phenomenon of synchronization is a prototypical example where dissipation is a key enabling mechanism and it only recently started to emerge in the quantum domain due to advancements in quantum technology to exquisitely adjust both the system and environmental properties. Still, inevitable imperfections -- local deformations caused by ambient conditions and long-term degradation -- may significantly alter or even destroy the desired synchronicity altogether, which ultimately constraints its pertinence for future quantum devices. Consequently, we are in the need of universal principles to promote the robustness of synchronization and facilitate its technological leap. The proposed project 'BoFTISync' addresses this task by exploiting the power of topological phases of matter, which exhibit an unusual protection from the adverse effects of impurities. With a unique interdisciplinary approach of integrating topological concepts with dynamical symmetries of interacting bosonic modes and open quantum systems, the project aims to establish topology as an innovative way to protect quantum signatures of synchronization, and at the same time opens the avenue for unexplored phenomena at the interface of these seemingly distinct research areas. This investigation is not only fundamentally interesting, but will also spark new applications in quantum technologies and information processing in NISQ platforms ranging from trapped ions to optomechanics. Thus, BoFTISync will prepare the ground for a deeper understanding on topology in open nonlinear systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101149948 |
Start date: | 01-12-2024 |
End date: | 30-11-2026 |
Total budget - Public funding: | - 165 312,00 Euro |
Cordis data
Original description
We are currently witnessing a technological revolution driven by the recent achievements in NISQ devices, which despite their imperfect controllability have already revolutionized our understanding of many-body dynamics and quantum information science. While a lot of effort is spent to minimize the undesirable consequences of dissipation, interactions with the environment can also generate useful quantum behavior. The phenomenon of synchronization is a prototypical example where dissipation is a key enabling mechanism and it only recently started to emerge in the quantum domain due to advancements in quantum technology to exquisitely adjust both the system and environmental properties. Still, inevitable imperfections -- local deformations caused by ambient conditions and long-term degradation -- may significantly alter or even destroy the desired synchronicity altogether, which ultimately constraints its pertinence for future quantum devices. Consequently, we are in the need of universal principles to promote the robustness of synchronization and facilitate its technological leap. The proposed project 'BoFTISync' addresses this task by exploiting the power of topological phases of matter, which exhibit an unusual protection from the adverse effects of impurities. With a unique interdisciplinary approach of integrating topological concepts with dynamical symmetries of interacting bosonic modes and open quantum systems, the project aims to establish topology as an innovative way to protect quantum signatures of synchronization, and at the same time opens the avenue for unexplored phenomena at the interface of these seemingly distinct research areas. This investigation is not only fundamentally interesting, but will also spark new applications in quantum technologies and information processing in NISQ platforms ranging from trapped ions to optomechanics. Thus, BoFTISync will prepare the ground for a deeper understanding on topology in open nonlinear systems.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
21-11-2024
Images
No images available.
Geographical location(s)