BIOCOMAT | Enhancing Bioavailability of Beneficial Polyphenolic Compounds in Food via Advanced Materials Engineering

Summary
A diet rich in plant-based foods, abundant in beneficial polyphenolic compounds (PCs), is pivotal in preventing civilization-related diseases. PCs are valued for their robust antioxidant properties and prebiotic potential. However, their inherent instability and sensitivity to environmental factors and processing methods pose challenges. Rapid oxidation and limited bioavailability in the human body underscore the need for effective stability enhancers and delivery systems. In principle, the encapsulation technique provides prolonged and controlled release of food ingredients and increases the stability and bioavailability of bioactive compounds. The complexity of the capsule design, however, has consumed considerable resources in the food science field but has yet to result in satisfactory results in terms of PCs delivery.

This project offers a fresh perspective by treating capsule design as a materials engineering task. We aim to leverage cutting-edge material design, preparation, and characterization techniques to enhance the bioavailability of encapsulated PCs. Our approach will involve layer-by-layer methods to create model systems with precise control over the morphology of polysaccharide and protein encapsulation layers. Co-focal microscopy, SEM imaging, and nanomechanics will provide insights into structure, stability, and PC release in vitro. To optimize layer composition efficiently, we will integrate robot-aided experimentation and machine learning.
These efforts will culminate in developing a Material Acceleration Platform, a versatile methodology for designing polyphenolic compound delivery systems for food applications.

To achieve these objectives, the Researcher will be provided training-through-research in a broad spectrum of preparation and characterization techniques aimed at layer-by-layer systems and data-driven experimentation approaches such as the Design of Experiments and Bayesian optimization.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101151044
Start date: 01-10-2024
End date: 30-09-2026
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

A diet rich in plant-based foods, abundant in beneficial polyphenolic compounds (PCs), is pivotal in preventing civilization-related diseases. PCs are valued for their robust antioxidant properties and prebiotic potential. However, their inherent instability and sensitivity to environmental factors and processing methods pose challenges. Rapid oxidation and limited bioavailability in the human body underscore the need for effective stability enhancers and delivery systems. In principle, the encapsulation technique provides prolonged and controlled release of food ingredients and increases the stability and bioavailability of bioactive compounds. The complexity of the capsule design, however, has consumed considerable resources in the food science field but has yet to result in satisfactory results in terms of PCs delivery.

This project offers a fresh perspective by treating capsule design as a materials engineering task. We aim to leverage cutting-edge material design, preparation, and characterization techniques to enhance the bioavailability of encapsulated PCs. Our approach will involve layer-by-layer methods to create model systems with precise control over the morphology of polysaccharide and protein encapsulation layers. Co-focal microscopy, SEM imaging, and nanomechanics will provide insights into structure, stability, and PC release in vitro. To optimize layer composition efficiently, we will integrate robot-aided experimentation and machine learning.
These efforts will culminate in developing a Material Acceleration Platform, a versatile methodology for designing polyphenolic compound delivery systems for food applications.

To achieve these objectives, the Researcher will be provided training-through-research in a broad spectrum of preparation and characterization techniques aimed at layer-by-layer systems and data-driven experimentation approaches such as the Design of Experiments and Bayesian optimization.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

18-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023