Free-Kagome | Force-free microstructures host intrinsic dynamics of orbital phases in AV3Sb5 Kagome metals

Summary
Electron correlations significantly modify electron self-organization in quantum materials, resulting in a landscape of competing orders and exotic quantum phenomena. The recently discovered AV3Sb5 family Kagome superconductors is an intriguing example of competing correlated orders with robust entanglement, as manipulating one order can affect or modify another, akin to the unique electromagnetic responses of multi-ferroics. These strongly entangled orders have led to an exciting hypothesis of orbital loop current, a prime example of correlation-driven electronic instabilities. Nevertheless, it renders the inherent characteristics practically inaccessible through conventional means, as even slight variations in experimental conditions can significantly affect their physical properties.

Our research plan is to examine the novel electronic response of the hypothesized orbital loop current in AV3Sb5. We will research the intrinsic dynamics of orbital phases and their unique electronic response via 1) atomically engineering the Kagome nets with the comprehensive material database serves as the Kagome toolbox, 2) heat/electric quenching of charge order for effectively tuning the interlayer coupling in a Kagome glass state, 3) spatial control of chiral domains with optical polarization, representing three unambiguous routes for revealing the intrinsic electronic orders in AV3Sb5.

These goals are ambitious yet entirely realizable: Free-Kagome’s research approach is based on a unique force-free setup that features controllable mechanical and thermal coupling between the focused-ion-beam (FIB) fabricated microstructure and its supporting frame based on the extremely soft membrane springs with designed geometry.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101164280
Start date: 01-01-2025
End date: 31-12-2029
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Electron correlations significantly modify electron self-organization in quantum materials, resulting in a landscape of competing orders and exotic quantum phenomena. The recently discovered AV3Sb5 family Kagome superconductors is an intriguing example of competing correlated orders with robust entanglement, as manipulating one order can affect or modify another, akin to the unique electromagnetic responses of multi-ferroics. These strongly entangled orders have led to an exciting hypothesis of orbital loop current, a prime example of correlation-driven electronic instabilities. Nevertheless, it renders the inherent characteristics practically inaccessible through conventional means, as even slight variations in experimental conditions can significantly affect their physical properties.

Our research plan is to examine the novel electronic response of the hypothesized orbital loop current in AV3Sb5. We will research the intrinsic dynamics of orbital phases and their unique electronic response via 1) atomically engineering the Kagome nets with the comprehensive material database serves as the Kagome toolbox, 2) heat/electric quenching of charge order for effectively tuning the interlayer coupling in a Kagome glass state, 3) spatial control of chiral domains with optical polarization, representing three unambiguous routes for revealing the intrinsic electronic orders in AV3Sb5.

These goals are ambitious yet entirely realizable: Free-Kagome’s research approach is based on a unique force-free setup that features controllable mechanical and thermal coupling between the focused-ion-beam (FIB) fabricated microstructure and its supporting frame based on the extremely soft membrane springs with designed geometry.

Status

SIGNED

Call topic

ERC-2024-STG

Update Date

10-04-2025
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.1 Frontier science
ERC-2024-STG ERC STARTING GRANTS