LWEF-4-IPV | Scale-up and Demonstrator of Luminescent Waveguide Encoded Films for Indoor Photovoltaics

Summary
The Internet of Things (IoT) underpins our future smart world where various electronic devices could be integrated with, and controlled by, wireless communication. Many of these devices will be standalone or portable, creating an urgent demand for off-grid power sources. Solar photovoltaic (PV) cells are viable alternatives to batteries as perpetual power sources for IoT devices. However, crystalline silicon (c-Si) PV cells (which account for 95% of the global PV market) are not designed to work with diffuse, artificial indoor light-emitting diode (LED) lighting and perform poorly under these conditions. Within the remit of the ERC CoG project SPECTRACON, we have developed a new photonic platform technology – luminescent waveguide encoded films (LWEFs), which overcomes these limitations by (i) increasing the field of view for light capture and (ii) converting LED photons into energies that can be used more effectively by PV cells. In this PoC project, we will advance this technology towards commercialisation through the fabrication of the prototype LWEF integrated on the top surface of a c-Si PV, coupled with testing under standardised indoor lighting conditions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101189134
Start date: 01-01-2025
End date: 30-06-2026
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

The Internet of Things (IoT) underpins our future smart world where various electronic devices could be integrated with, and controlled by, wireless communication. Many of these devices will be standalone or portable, creating an urgent demand for off-grid power sources. Solar photovoltaic (PV) cells are viable alternatives to batteries as perpetual power sources for IoT devices. However, crystalline silicon (c-Si) PV cells (which account for 95% of the global PV market) are not designed to work with diffuse, artificial indoor light-emitting diode (LED) lighting and perform poorly under these conditions. Within the remit of the ERC CoG project SPECTRACON, we have developed a new photonic platform technology – luminescent waveguide encoded films (LWEFs), which overcomes these limitations by (i) increasing the field of view for light capture and (ii) converting LED photons into energies that can be used more effectively by PV cells. In this PoC project, we will advance this technology towards commercialisation through the fabrication of the prototype LWEF integrated on the top surface of a c-Si PV, coupled with testing under standardised indoor lighting conditions.

Status

SIGNED

Call topic

ERC-2024-POC

Update Date

20-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.1 Frontier science
ERC-2024-POC ERC PROOF OF CONCEPT GRANTS