Summary
Organic light emitting diodes (OLEDs) are among the most efficient optoelectronic devices for multiple displays and illumination technologies. Their superior performance over conventional sources has boosted this discipline, reaching to what is considered as the 4th generation of OLEDs. These OLEDs are based on a novel concept known as hyperfluorescence (HF), in which a thermally activated delayed fluorescent (TADF) material acts as sensitizer of a narrow-band fluorescent emitter via Förster resonance energy transfer (FRET). However, HF-OLEDs still present intrinsic limitations mostly related to molecular aggregation of TADF compounds, and the FRET efficiency.
Metal-organic frameworks (MOFs) are excellent platforms for developing novel HF materials to be used in the fabrication of more efficient OLEDs. Their ordered structure, joint with the possibility of using TADF molecules as organic linkers, will minimize the issues associated with molecular aggregation, while enhancing the TADF mechanism by reducing molecular motions. Moreover, their porous structure allows for the encapsulation of narrow-band emitters (HF guest@TADF-MOFs), shortening the distances between the donor (TADF-MOF) and the acceptor (narrow-band emitter), and thus, increasing the FRET efficiency.
HyperFMOF intends to fabricate and fully characterize novel HF guest@TADF-MOFs, which will be subsequently integrated as emissive layers of high-performance OLEDs.
This project is multidisciplinary and highly ambitious, and the overall aim will be achieved by: the synthesis and characterization of unexplored TADF linkers, TADF-MOFs and HF guest@TADF-MOFs; the in-depth investigation of their spectroscopic and photodynamics properties; and the manufacturing, characterization and optimization of novel HF guest@TADF OLEDs.
HyperFMOF will open new avenues in different research areas from synthesis to spectroscopy and OLED technology, and will overcome the limitations of preceding OLED generations.
Metal-organic frameworks (MOFs) are excellent platforms for developing novel HF materials to be used in the fabrication of more efficient OLEDs. Their ordered structure, joint with the possibility of using TADF molecules as organic linkers, will minimize the issues associated with molecular aggregation, while enhancing the TADF mechanism by reducing molecular motions. Moreover, their porous structure allows for the encapsulation of narrow-band emitters (HF guest@TADF-MOFs), shortening the distances between the donor (TADF-MOF) and the acceptor (narrow-band emitter), and thus, increasing the FRET efficiency.
HyperFMOF intends to fabricate and fully characterize novel HF guest@TADF-MOFs, which will be subsequently integrated as emissive layers of high-performance OLEDs.
This project is multidisciplinary and highly ambitious, and the overall aim will be achieved by: the synthesis and characterization of unexplored TADF linkers, TADF-MOFs and HF guest@TADF-MOFs; the in-depth investigation of their spectroscopic and photodynamics properties; and the manufacturing, characterization and optimization of novel HF guest@TADF OLEDs.
HyperFMOF will open new avenues in different research areas from synthesis to spectroscopy and OLED technology, and will overcome the limitations of preceding OLED generations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101163095 |
Start date: | 01-01-2025 |
End date: | 31-12-2029 |
Total budget - Public funding: | 1 614 000,00 Euro - 1 614 000,00 Euro |
Cordis data
Original description
Organic light emitting diodes (OLEDs) are among the most efficient optoelectronic devices for multiple displays and illumination technologies. Their superior performance over conventional sources has boosted this discipline, reaching to what is considered as the 4th generation of OLEDs. These OLEDs are based on a novel concept known as hyperfluorescence (HF), in which a thermally activated delayed fluorescent (TADF) material acts as sensitizer of a narrow-band fluorescent emitter via Förster resonance energy transfer (FRET). However, HF-OLEDs still present intrinsic limitations mostly related to molecular aggregation of TADF compounds, and the FRET efficiency.Metal-organic frameworks (MOFs) are excellent platforms for developing novel HF materials to be used in the fabrication of more efficient OLEDs. Their ordered structure, joint with the possibility of using TADF molecules as organic linkers, will minimize the issues associated with molecular aggregation, while enhancing the TADF mechanism by reducing molecular motions. Moreover, their porous structure allows for the encapsulation of narrow-band emitters (HF guest@TADF-MOFs), shortening the distances between the donor (TADF-MOF) and the acceptor (narrow-band emitter), and thus, increasing the FRET efficiency.
HyperFMOF intends to fabricate and fully characterize novel HF guest@TADF-MOFs, which will be subsequently integrated as emissive layers of high-performance OLEDs.
This project is multidisciplinary and highly ambitious, and the overall aim will be achieved by: the synthesis and characterization of unexplored TADF linkers, TADF-MOFs and HF guest@TADF-MOFs; the in-depth investigation of their spectroscopic and photodynamics properties; and the manufacturing, characterization and optimization of novel HF guest@TADF OLEDs.
HyperFMOF will open new avenues in different research areas from synthesis to spectroscopy and OLED technology, and will overcome the limitations of preceding OLED generations.
Status
SIGNEDCall topic
ERC-2024-STGUpdate Date
26-11-2024
Images
No images available.
Geographical location(s)