Summary
Despite unprecedented clinical success, T cell-based immunotherapies present significant heterogeneity in response rates, often attributed to dampened activation and limited tumour infiltration of CD8+ T cells. Studies in mice and humans have shown that gut commensals can modulate anti-cancer immune responses dictating the efficacy of immunotherapy, but have failed to identify species that are consistently associated with improved patient prognosis.
I recently made a breakthrough in our efforts to understand the host determinants that define microbiome-dependent cancer immunity. I discovered that a single micronutrient, vitamin D (vitD), enhances the ability of the gut microbiome to induce potent T cell-mediated immunity to cancer, dictating immunotherapy success in pre-clinical models. Unlike any other study, I found that vitD modulates the function of the microbiome without significantly affecting its composition, diverging from a species-centric view of the microbiome to focusing on key host-microbiome interactions regulated by nutrient availability.
MICROBIOGUARD attempts to systematically dissect the multidirectional gut-immune-cancer axis. We first address a key question in the field: what defines a ‘good’ microbiome that promotes immunity to cancer? Aim 1 of this proposal will dissect the mechanisms by which vitD transforms the function of the gut microbiome with a focus on identification of microbial-derived bioactive molecules. We will then assess how these altered microbial functions interact with host cells bidirectionally to shape anti-cancer immunity (Aims 1/2). We will broaden our findings and determine how vitD-microbiome-immune interactions impact cancer development. Finally, we will investigate if vitD enables human microbiome to augment immunotherapy response (Aim 3). Collectively, MICROBIOGUARD provides an unmatched opportunity to identify non-redundant microbiome-immune checkpoints that can be targeted to overcome immunotherapy resistance.
I recently made a breakthrough in our efforts to understand the host determinants that define microbiome-dependent cancer immunity. I discovered that a single micronutrient, vitamin D (vitD), enhances the ability of the gut microbiome to induce potent T cell-mediated immunity to cancer, dictating immunotherapy success in pre-clinical models. Unlike any other study, I found that vitD modulates the function of the microbiome without significantly affecting its composition, diverging from a species-centric view of the microbiome to focusing on key host-microbiome interactions regulated by nutrient availability.
MICROBIOGUARD attempts to systematically dissect the multidirectional gut-immune-cancer axis. We first address a key question in the field: what defines a ‘good’ microbiome that promotes immunity to cancer? Aim 1 of this proposal will dissect the mechanisms by which vitD transforms the function of the gut microbiome with a focus on identification of microbial-derived bioactive molecules. We will then assess how these altered microbial functions interact with host cells bidirectionally to shape anti-cancer immunity (Aims 1/2). We will broaden our findings and determine how vitD-microbiome-immune interactions impact cancer development. Finally, we will investigate if vitD enables human microbiome to augment immunotherapy response (Aim 3). Collectively, MICROBIOGUARD provides an unmatched opportunity to identify non-redundant microbiome-immune checkpoints that can be targeted to overcome immunotherapy resistance.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101165606 |
Start date: | 01-10-2024 |
End date: | 30-09-2029 |
Total budget - Public funding: | 2 186 133,00 Euro - 2 186 133,00 Euro |
Cordis data
Original description
Despite unprecedented clinical success, T cell-based immunotherapies present significant heterogeneity in response rates, often attributed to dampened activation and limited tumour infiltration of CD8+ T cells. Studies in mice and humans have shown that gut commensals can modulate anti-cancer immune responses dictating the efficacy of immunotherapy, but have failed to identify species that are consistently associated with improved patient prognosis.I recently made a breakthrough in our efforts to understand the host determinants that define microbiome-dependent cancer immunity. I discovered that a single micronutrient, vitamin D (vitD), enhances the ability of the gut microbiome to induce potent T cell-mediated immunity to cancer, dictating immunotherapy success in pre-clinical models. Unlike any other study, I found that vitD modulates the function of the microbiome without significantly affecting its composition, diverging from a species-centric view of the microbiome to focusing on key host-microbiome interactions regulated by nutrient availability.
MICROBIOGUARD attempts to systematically dissect the multidirectional gut-immune-cancer axis. We first address a key question in the field: what defines a ‘good’ microbiome that promotes immunity to cancer? Aim 1 of this proposal will dissect the mechanisms by which vitD transforms the function of the gut microbiome with a focus on identification of microbial-derived bioactive molecules. We will then assess how these altered microbial functions interact with host cells bidirectionally to shape anti-cancer immunity (Aims 1/2). We will broaden our findings and determine how vitD-microbiome-immune interactions impact cancer development. Finally, we will investigate if vitD enables human microbiome to augment immunotherapy response (Aim 3). Collectively, MICROBIOGUARD provides an unmatched opportunity to identify non-redundant microbiome-immune checkpoints that can be targeted to overcome immunotherapy resistance.
Status
SIGNEDCall topic
ERC-2024-STGUpdate Date
24-11-2024
Images
No images available.
Geographical location(s)