NEURO2D | Neuromorphic computing system for real-time signal monitoring and classification with ultra-low-power 2D devices

Summary
The detection and classification of electrophysiological signals (EPSs), such as
electroencephalography (EEG) and electromyography (EMG) recordings, are the gold standard in
neuroscience, enabling the identification of digital biomarkers capable of health monitoring,
personalised medicine and advanced brain-computer interfaces (BCIs). The state-of-the-art
technology in this field, however, still relies on bulky, inefficient microelectronic systems which
relies on artificial intelligence (AI) in the cloud. The energy efficiency and classification accuracy
can be largely improved by neuromorphic computing with emerging materials and devices capable
of mimicking the neural mechanisms in our brain. This project aims at developing a novel class of
neuromorphic systems based on reservoir computing (RC) in charge trap memory (CTM) based on
2D semiconductors. 2D-CTM devices are able to extracted features from EPSs at extremely low
power and high accuracy of classification, thus providing efficient biomarkers for medical diagnosis
and BCIs. The project will develop the RC system based on the 2D-CTM technology for a broad
application space, with the goal of establishing a novel technology platform for scalable, lowpower implantable/wearable chips for real-time EPS monitoring and classification.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101189508
Start date: 01-10-2024
End date: 31-03-2026
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

The detection and classification of electrophysiological signals (EPSs), such as
electroencephalography (EEG) and electromyography (EMG) recordings, are the gold standard in
neuroscience, enabling the identification of digital biomarkers capable of health monitoring,
personalised medicine and advanced brain-computer interfaces (BCIs). The state-of-the-art
technology in this field, however, still relies on bulky, inefficient microelectronic systems which
relies on artificial intelligence (AI) in the cloud. The energy efficiency and classification accuracy
can be largely improved by neuromorphic computing with emerging materials and devices capable
of mimicking the neural mechanisms in our brain. This project aims at developing a novel class of
neuromorphic systems based on reservoir computing (RC) in charge trap memory (CTM) based on
2D semiconductors. 2D-CTM devices are able to extracted features from EPSs at extremely low
power and high accuracy of classification, thus providing efficient biomarkers for medical diagnosis
and BCIs. The project will develop the RC system based on the 2D-CTM technology for a broad
application space, with the goal of establishing a novel technology platform for scalable, lowpower implantable/wearable chips for real-time EPS monitoring and classification.

Status

SIGNED

Call topic

ERC-2024-POC

Update Date

24-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.1 Frontier science
ERC-2024-POC ERC PROOF OF CONCEPT GRANTS