UAVEndure II | Innovative fuel cell propulsion technology enabling long endurance for small UAVs

Summary
UAV flight time is critical for several mission scenarios, as frequent recharging or refuelling limits the effective availability and
service time, as well as range. This has thus far prevented the use of fully electric unmanned aerial vehicles (UAVs), since
their performance scales unfavourably with the size/intensity of the UAV operation. Moreover, when small electric UAVs are
massively deployed, and particularly in time critical mission, the handling and charging of many battery packs becomes a
logistical problem. Thus, manned aerial platforms (helicopters and planes) or large (>25 kg) fixed-wing UAV systems,
powered by internal combustion engines (ICE) have been the preferred option for long endurance missions such as
monitoring and surveying. However, these large systems present high CAPEX and OPEX, mostly due to the oversized
nature of these systems.

The unique approach of UAVEndure II project is the combination of two technologies, namely small fixed-wing UAVs and
fuel-cell power generation at a downsized scale and price not attempted before. The rationale is to harvest all the benefits of
small electric UAVs, while having access to high endurance hitherto only possible with large aerial platforms propelled by
ICE.

Sky-Watch (SKY) and KraftWerk (KWT) have jointly developed the next generation fuel cell propulsion system for small
UAVs - ELJUN - to cover the needs of drone OEMs and end-users for increased flight range/time of small UAVs. ELJUN
provides 10x more flight range than LiPO battery. This is expected to further increase the usability of these small systems as
an alternative to larger, costlier drones, thus untapping wider access to the use of this technology in civil and governmental
applications. Thus, we expect ELJUN to become a new reference in the sector.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/859655
Start date: 01-12-2019
End date: 31-05-2022
Total budget - Public funding: 3 551 250,00 Euro - 2 485 875,00 Euro
Cordis data

Original description

UAV flight time is critical for several mission scenarios, as frequent recharging or refuelling limits the effective availability and
service time, as well as range. This has thus far prevented the use of fully electric unmanned aerial vehicles (UAVs), since
their performance scales unfavourably with the size/intensity of the UAV operation. Moreover, when small electric UAVs are
massively deployed, and particularly in time critical mission, the handling and charging of many battery packs becomes a
logistical problem. Thus, manned aerial platforms (helicopters and planes) or large (>25 kg) fixed-wing UAV systems,
powered by internal combustion engines (ICE) have been the preferred option for long endurance missions such as
monitoring and surveying. However, these large systems present high CAPEX and OPEX, mostly due to the oversized
nature of these systems.

The unique approach of UAVEndure II project is the combination of two technologies, namely small fixed-wing UAVs and
fuel-cell power generation at a downsized scale and price not attempted before. The rationale is to harvest all the benefits of
small electric UAVs, while having access to high endurance hitherto only possible with large aerial platforms propelled by
ICE.

Sky-Watch (SKY) and KraftWerk (KWT) have jointly developed the next generation fuel cell propulsion system for small
UAVs - ELJUN - to cover the needs of drone OEMs and end-users for increased flight range/time of small UAVs. ELJUN
provides 10x more flight range than LiPO battery. This is expected to further increase the usability of these small systems as
an alternative to larger, costlier drones, thus untapping wider access to the use of this technology in civil and governmental
applications. Thus, we expect ELJUN to become a new reference in the sector.

Status

CLOSED

Call topic

EIC-SMEInst-2018-2020

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.0. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.0. INDUSTRIAL LEADERSHIP - Innovation In SMEs - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.0. Cross-cutting call topics
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2