SPRING | Scalable Production and Integration of Graphene

Summary
The global economy depends on semiconductor devices – electronic chips – in everything from smartphones to cars, the internet to lifesaving medical equipment. This market has been driven by an exponential increase in capacity achieved through miniaturisation, now reaching its physical limits. Graphene, a one-atom thick carbon layer is seen as having the greatest potential for semiconductor improvements. However, the adoption of graphene is impeded because there is no production and transfer technology which delivers high quality graphene and is suitable for large scale production processes. Applied Nanolayers (ANL) - founded in 2012 by seasoned industry professionals & material scientists from Leiden University - is unique in developing the technology to produce and exploit quality graphene on an industrial scale. Large tool vendors, supplying tools that enable semiconductor companies to get maximum performance from the current silicon technology, have not built growth and transfer tools for graphene. Therefore, in addition to developing a production methodology, ANL has built its own tools, using existing tool platforms. This means that the ANL processes can be seamlessly integrated into mainstream industry fabrication partners. ANL has a proven automated growth process as well as a dry transfer process (TRL6). The latter is not yet fully automated. ANL’s Delft foundry location with access to the facilities of the TU Delft EKL Laboratory and world class material scientists enables ANL to propose an innovative industrial foundry service for graphene. With the SPRING project, ANL aims to scale-up and automate its 2D material foundry technology, bringing it to the commercialisation stage (TRL9). Within 5 years from the project ending, ANL expects to obtain revenues of €54m and an EBIT of nearly €9m. ANL’s mission is to be the leading global foundry for integrating 2D materials in the designated markets.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/881273
Start date: 01-10-2019
End date: 30-09-2023
Total budget - Public funding: 3 502 500,00 Euro - 2 451 750,00 Euro
Cordis data

Original description

The global economy depends on semiconductor devices – electronic chips – in everything from smartphones to cars, the internet to lifesaving medical equipment. This market has been driven by an exponential increase in capacity achieved through miniaturisation, now reaching its physical limits. Graphene, a one-atom thick carbon layer is seen as having the greatest potential for semiconductor improvements. However, the adoption of graphene is impeded because there is no production and transfer technology which delivers high quality graphene and is suitable for large scale production processes. Applied Nanolayers (ANL) - founded in 2012 by seasoned industry professionals & material scientists from Leiden University - is unique in developing the technology to produce and exploit quality graphene on an industrial scale. Large tool vendors, supplying tools that enable semiconductor companies to get maximum performance from the current silicon technology, have not built growth and transfer tools for graphene. Therefore, in addition to developing a production methodology, ANL has built its own tools, using existing tool platforms. This means that the ANL processes can be seamlessly integrated into mainstream industry fabrication partners. ANL has a proven automated growth process as well as a dry transfer process (TRL6). The latter is not yet fully automated. ANL’s Delft foundry location with access to the facilities of the TU Delft EKL Laboratory and world class material scientists enables ANL to propose an innovative industrial foundry service for graphene. With the SPRING project, ANL aims to scale-up and automate its 2D material foundry technology, bringing it to the commercialisation stage (TRL9). Within 5 years from the project ending, ANL expects to obtain revenues of €54m and an EBIT of nearly €9m. ANL’s mission is to be the leading global foundry for integrating 2D materials in the designated markets.

Status

CLOSED

Call topic

EIC-SMEInst-2018-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.0. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.0. INDUSTRIAL LEADERSHIP - Innovation In SMEs - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.0. Cross-cutting call topics
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2