IFM nano thruster | A highly efficient propulsion system for micro- and nano-satellites able to double the mission lifetime and to position satellites with unprecedented accuracy

Summary
Several players are investing in Constellations of Satellites to provide customers services as global imaging in near real time, telephone & internet coverage, monitoring of ships, airplanes, fires etc. The global market of this new space race, worth 2.2 B$ in 2016, is expected to increase to 5.3 B$ in 2021. Several players are trying to disrupt market by lowering manufacturing costs, but the most difficult component to acquire remains the propulsion system: these satellites, in fact, work without a propulsion system, resulting in high replacement rates (once per year), limited orbit manoeuvres, difficulties in flight formation, passive deorbiting not sufficient to put satellites into graveyard orbits at their end of life.
AMR propulsion aims to solve these problem with a unique, modular product: the IFM nano thruster, a compact (1dm3, 100). The core, proprietary technology is based on a widely tested (10,000+ h) thruster developed for large satellite control in future ESA missions, specifically re-engineered to fit the space and mass constraints of small satellites. The thruster is based on a porous tungsten crown emitter employing 28 needles, instead of a single one, for field emission. Each porous needle combines he advantages of both the capillary needle and the solid needle, resulting in high resistance to contamination and small size. The manufacturing process is extremely difficult: it took ten years to be perfected and Propulsion is the unique proprietary of this huge know-how.
During Phase 1 project, Propulsion will assess the scale-up industrialization plan and will evaluate a sound go-to-market strategy to ensure successful commercialization of IFM nano thruster.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/745460
Start date: 01-12-2016
End date: 31-03-2017
Total budget - Public funding: 71 429,00 Euro - 50 000,00 Euro
Cordis data

Original description

Several players are investing in Constellations of Satellites to provide customers services as global imaging in near real time, telephone & internet coverage, monitoring of ships, airplanes, fires etc. The global market of this new space race, worth 2.2 B$ in 2016, is expected to increase to 5.3 B$ in 2021. Several players are trying to disrupt market by lowering manufacturing costs, but the most difficult component to acquire remains the propulsion system: these satellites, in fact, work without a propulsion system, resulting in high replacement rates (once per year), limited orbit manoeuvres, difficulties in flight formation, passive deorbiting not sufficient to put satellites into graveyard orbits at their end of life.
AMR propulsion aims to solve these problem with a unique, modular product: the IFM nano thruster, a compact (1dm3, 100). The core, proprietary technology is based on a widely tested (10,000+ h) thruster developed for large satellite control in future ESA missions, specifically re-engineered to fit the space and mass constraints of small satellites. The thruster is based on a porous tungsten crown emitter employing 28 needles, instead of a single one, for field emission. Each porous needle combines he advantages of both the capillary needle and the solid needle, resulting in high resistance to contamination and small size. The manufacturing process is extremely difficult: it took ten years to be perfected and Propulsion is the unique proprietary of this huge know-how.
During Phase 1 project, Propulsion will assess the scale-up industrialization plan and will evaluate a sound go-to-market strategy to ensure successful commercialization of IFM nano thruster.

Status

CLOSED

Call topic

SMEInst-04-2016-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.0. Cross-cutting call topics
H2020-SMEINST-1-2016-2017
SMEInst-04-2016-2017 Engaging SMEs in space research and development
H2020-SMEINST-2-2016-2017
SMEInst-04-2016-2017 Engaging SMEs in space research and development
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.1. Mainstreaming SME support, especially through a dedicated instrument
H2020-SMEINST-1-2016-2017
SMEInst-04-2016-2017 Engaging SMEs in space research and development
H2020-SMEINST-2-2016-2017
SMEInst-04-2016-2017 Engaging SMEs in space research and development