EnCORE | Machine state forecasting technology coupled with product quality control to unleash productivity for the manufacturing sector (EnCORE)

Summary
In the manufacturing sectors, the traditional planned maintenance approach is no longer viable, as it cannot cope with the ever-rising complexity of production systems. This pressing problem hurts industry’s profitability, and unplanned downtime costs industrial manufacturers €43 billion per year. This pressing problem has fuelled the growth of the predictive maintenance market. Currently, predictive maintenance solutions employ typical machine learning approaches based on monolithic rule-based predictions and require from the customer labelled data that correspond to defective machine states. This impedes the penetration of predictive maintenance in the industry. EnCORE is the fruit of 5 years of R&D to develop proprietary deep neural networks fit for predictive maintenance applications. Our solution uses best-in-class deep learning technology removing the overheads related with data preparation and enable the prediction of machine’s future condition using data that correspond to normal machine states. This is a game changing approach in the predictive maintenance industry. EnCORE is at TRL-6, with our software being validated at two different applications, (1) a compression moulding machine that produces plastic bottle enclosures/caps and (2) a cold forming machine that produces razor blades. Our target market will be the Food & Beverage and Consumer Goods industries targeting both OEMs of machinery and End-Users use such machinery. To take our product to the market, we will employ an hybrid business model using both direct sales and sales through industrial IoT platforms. EnCORE’s unique offering unlocks tremendous value for our customers; this will fuel the adoption of our solution by the industry. In the commercialisation period, we forecast cumulative profits of about €15 million with a strong Return on Investment (ROI) of €13 million. This will allow us to grow our workforce by 83 new employees, to meet the expected market demand for our breakthrough product.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/889058
Start date: 01-01-2020
End date: 30-04-2020
Total budget - Public funding: 71 429,00 Euro - 50 000,00 Euro
Cordis data

Original description

In the manufacturing sectors, the traditional planned maintenance approach is no longer viable, as it cannot cope with the ever-rising complexity of production systems. This pressing problem hurts industry’s profitability, and unplanned downtime costs industrial manufacturers €43 billion per year. This pressing problem has fuelled the growth of the predictive maintenance market. Currently, predictive maintenance solutions employ typical machine learning approaches based on monolithic rule-based predictions and require from the customer labelled data that correspond to defective machine states. This impedes the penetration of predictive maintenance in the industry. EnCORE is the fruit of 5 years of R&D to develop proprietary deep neural networks fit for predictive maintenance applications. Our solution uses best-in-class deep learning technology removing the overheads related with data preparation and enable the prediction of machine’s future condition using data that correspond to normal machine states. This is a game changing approach in the predictive maintenance industry. EnCORE is at TRL-6, with our software being validated at two different applications, (1) a compression moulding machine that produces plastic bottle enclosures/caps and (2) a cold forming machine that produces razor blades. Our target market will be the Food & Beverage and Consumer Goods industries targeting both OEMs of machinery and End-Users use such machinery. To take our product to the market, we will employ an hybrid business model using both direct sales and sales through industrial IoT platforms. EnCORE’s unique offering unlocks tremendous value for our customers; this will fuel the adoption of our solution by the industry. In the commercialisation period, we forecast cumulative profits of about €15 million with a strong Return on Investment (ROI) of €13 million. This will allow us to grow our workforce by 83 new employees, to meet the expected market demand for our breakthrough product.

Status

CLOSED

Call topic

EIC-SMEInst-2018-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.0. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-1
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.0. INDUSTRIAL LEADERSHIP - Innovation In SMEs - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-1
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.0. Cross-cutting call topics
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-1