POWERSTORE | MikroMasch Powerstore for renewables microgeneration: scaling up the next generation battery technology for residential and commercial energy storage systems

Summary
Currently, microgeneration is not an economical choice for most home- and business owners. Why? Because although the equipment costs are falling, the battery systems that are needed for using microgenerated power as the primary energy source offer only meager storage capacity at very high prices, leaving end consumers with 10+ years before their small scale wind stations or solar panels start to pay off.

Energy storage systems (ESS) are the key enablers for adopting more renewables and demand-response grid solutions in the overall electricity supply mix. We are introducing the first ESS able to store enough energy to justify the investment in these solutions for home- and business owners.

With our exceptional 50 kWh energy storage capacity per single system at very low charging cycle cost, we are the clear industry leader in the up and coming ESS market – our next generation POWERSTORE stores 7 times more energy at 8 times lower lifetime cost compared to state of the art technologies.

ESS market is very attractive for investors and large Li-ion vendors alike, and is estimated to reach €14,6 billion by 2024. As our core innovation lies in the battery component level, the proposed technology is highly scalable and will potentially take the entire Li-ion industry to the next level of battery performance.

Our concept is based on synthesizing unique composite nanomaterials that we use for coating Li-ion battery electrodes. The coating enhances battery specific parameters and prevents capacity degradation. Building upon our successful Phase 1 project, within the Phase 2 we will focus on the final technical optimisation of our electrode coating technology, ramp up our operations to a pilot scale, and prepare for market entry by piloting our technology in commercial ESS prototypes in collaboration with a large Li-ion manufacturer. Based on conservative estimates, we foresee realizing €46,8 million in estimated revenues by 2024.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/766805
Start date: 01-09-2017
End date: 31-08-2019
Total budget - Public funding: 1 848 150,00 Euro - 1 293 705,00 Euro
Cordis data

Original description

Currently, microgeneration is not an economical choice for most home- and business owners. Why? Because although the equipment costs are falling, the battery systems that are needed for using microgenerated power as the primary energy source offer only meager storage capacity at very high prices, leaving end consumers with 10+ years before their small scale wind stations or solar panels start to pay off.

Energy storage systems (ESS) are the key enablers for adopting more renewables and demand-response grid solutions in the overall electricity supply mix. We are introducing the first ESS able to store enough energy to justify the investment in these solutions for home- and business owners.

With our exceptional 50 kWh energy storage capacity per single system at very low charging cycle cost, we are the clear industry leader in the up and coming ESS market – our next generation POWERSTORE stores 7 times more energy at 8 times lower lifetime cost compared to state of the art technologies.

ESS market is very attractive for investors and large Li-ion vendors alike, and is estimated to reach €14,6 billion by 2024. As our core innovation lies in the battery component level, the proposed technology is highly scalable and will potentially take the entire Li-ion industry to the next level of battery performance.

Our concept is based on synthesizing unique composite nanomaterials that we use for coating Li-ion battery electrodes. The coating enhances battery specific parameters and prevents capacity degradation. Building upon our successful Phase 1 project, within the Phase 2 we will focus on the final technical optimisation of our electrode coating technology, ramp up our operations to a pilot scale, and prepare for market entry by piloting our technology in commercial ESS prototypes in collaboration with a large Li-ion manufacturer. Based on conservative estimates, we foresee realizing €46,8 million in estimated revenues by 2024.

Status

CLOSED

Call topic

SMEInst-09-2016-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.0. INDUSTRIAL LEADERSHIP - ICT - Cross-cutting calls
H2020-SMEINST-1-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-SMEINST-2-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.1. Mainstreaming SME support, especially through a dedicated instrument
H2020-SMEINST-1-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-SMEINST-2-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.0. Cross-cutting call topics
H2020-SMEINST-1-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-SMEINST-2-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system