SAVANA | Massive reutilization of Electronic Health Records (EHRs) through AI to enhance clinical research and precision medicine

Summary
In the last twenty years, the average return on R&D expenditure in the pharma industry has dropped from almost 18% to 3.7%. Moreover, annual funding for biomedical research has more than doubled while new drugs approvals have declined by one third. There is a wide consensus that the main cause of this problem is the exhaustion of a model intended to develop ‘broad indications’ and the need for a new ‘precision medicine’ model. We simply do not know enough about the underlying disease mechanisms involved, and more research is required to develop better disease classifications, which will enable a more targeted development approach for drugs and therapies.

Electronic Health Records (EHRs) has been used for more than ten years in most developed countries, and they gather now exhaustive clinical information of millions of patients. Leveraging EHRs could accelerate clinical research, and improve healthcare quality.

However, in order to uncover unknown disease models from EHRs, precision medicine requires massive research studies on thousands of patients (often in several countries). Currently there is no tool capable of: 1) automating the extraction of data from EHRs, and also, solving the privacy concerns raised by EHRs.

SAVANA RESEARCH uses Natural Language Processing to extract data from massive amounts of EHRs’ clinical narratives. It has the following advantages intended to make a leap in clinical research efficiency: 1) It uses only de-identified clinical records and ensures state of the art technologies to protect data privacy; 2) It is capable of decoding ten times more EHRs in half of the time; 3) It is capable of identifying 100 times more variables from EHRs; 4) And it costs 40% less.
The application of NLP to healthcare is a fast-growing market that is expected to reach 2.65 billion by 2021, by growing at a CAGR of 20.8%. SAVANA RESEARCH’s target markets are primary Europe and North America, which together comprises 75% of all clinical trials worldwide.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/829654
Start date: 01-11-2018
End date: 31-07-2022
Total budget - Public funding: 2 337 696,00 Euro - 1 262 520,00 Euro
Cordis data

Original description

In the last twenty years, the average return on R&D expenditure in the pharma industry has dropped from almost 18% to 3.7%. Moreover, annual funding for biomedical research has more than doubled while new drugs approvals have declined by one third. There is a wide consensus that the main cause of this problem is the exhaustion of a model intended to develop ‘broad indications’ and the need for a new ‘precision medicine’ model. We simply do not know enough about the underlying disease mechanisms involved, and more research is required to develop better disease classifications, which will enable a more targeted development approach for drugs and therapies.

Electronic Health Records (EHRs) has been used for more than ten years in most developed countries, and they gather now exhaustive clinical information of millions of patients. Leveraging EHRs could accelerate clinical research, and improve healthcare quality.

However, in order to uncover unknown disease models from EHRs, precision medicine requires massive research studies on thousands of patients (often in several countries). Currently there is no tool capable of: 1) automating the extraction of data from EHRs, and also, solving the privacy concerns raised by EHRs.

SAVANA RESEARCH uses Natural Language Processing to extract data from massive amounts of EHRs’ clinical narratives. It has the following advantages intended to make a leap in clinical research efficiency: 1) It uses only de-identified clinical records and ensures state of the art technologies to protect data privacy; 2) It is capable of decoding ten times more EHRs in half of the time; 3) It is capable of identifying 100 times more variables from EHRs; 4) And it costs 40% less.
The application of NLP to healthcare is a fast-growing market that is expected to reach 2.65 billion by 2021, by growing at a CAGR of 20.8%. SAVANA RESEARCH’s target markets are primary Europe and North America, which together comprises 75% of all clinical trials worldwide.

Status

CLOSED

Call topic

EIC-SMEInst-2018-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.0. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.0. INDUSTRIAL LEADERSHIP - Innovation In SMEs - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.0. Cross-cutting call topics
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-2