BrainWorkloadReader | Generation of a business plan for the production of a compact and reliable device able to measure in real-time the cerebral workload state of high responsibility operators in the transport domain

Summary
The present proposal aims to generate a business plan related to the realization and commercialization of an already developed prototype able to track in real-time the cerebral workload of aircraft pilots or other operators in the transport domain. Such operators could be for instance the Air Traffic Controllers (ATCos) or those devoted to control the traffic of an high speed train network or subway. The developed device, named BrainWorkloadReader (BWR) will be used:
i) during training-assessment programs, to quantify the progress of the learners in terms of amount of cognitive resources requested during simulated or real tasks;
ii) during the normal daily activities of an operator in order to monitor in real time his/her cerebral workload for traffic control of airplanes, trains or cars in specialized control rooms.
The BWR device consists in a easy wearable cap with 6-8 electrodes connected in a wireless way to a portable recording systems. The already developed prototype has the size of a smartphone and it is able to return information about the level of cognitive workload of the operator (e.g pilots, ATCos etc etc).
The BWR device has no counterpart actually in the market, and its role will be not limited to the transport domain but it is potentially applicable in every situation in the close future in which there will be an operator and a task to be performed. This means that it will be possible to measure the level of cerebral effort across different contexts, including operators in remote surveillance tasks, etc. etc.
Possible applications will be in any environment in which a human has to monitor a system or a process and in which the occurrence of an error due to the excessive operator’s workload could have significant consequences for the safety of both the operators and other human subjects.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/663746
Start date: 01-01-2015
End date: 31-05-2015
Total budget - Public funding: 71 429,00 Euro - 50 000,00 Euro
Cordis data

Original description

The present proposal aims to generate a business plan related to the realization and commercialization of an already developed prototype able to track in real-time the cerebral workload of aircraft pilots or other operators in the transport domain. Such operators could be for instance the Air Traffic Controllers (ATCos) or those devoted to control the traffic of an high speed train network or subway. The developed device, named BrainWorkloadReader (BWR) will be used:
i) during training-assessment programs, to quantify the progress of the learners in terms of amount of cognitive resources requested during simulated or real tasks;
ii) during the normal daily activities of an operator in order to monitor in real time his/her cerebral workload for traffic control of airplanes, trains or cars in specialized control rooms.
The BWR device consists in a easy wearable cap with 6-8 electrodes connected in a wireless way to a portable recording systems. The already developed prototype has the size of a smartphone and it is able to return information about the level of cognitive workload of the operator (e.g pilots, ATCos etc etc).
The BWR device has no counterpart actually in the market, and its role will be not limited to the transport domain but it is potentially applicable in every situation in the close future in which there will be an operator and a task to be performed. This means that it will be possible to measure the level of cerebral effort across different contexts, including operators in remote surveillance tasks, etc. etc.
Possible applications will be in any environment in which a human has to monitor a system or a process and in which the occurrence of an error due to the excessive operator’s workload could have significant consequences for the safety of both the operators and other human subjects.

Status

CLOSED

Call topic

IT-1-2014-1

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.1. Mainstreaming SME support, especially through a dedicated instrument
H2020-SMEINST-1-2014
IT-1-2014-1 Small business innovation research for Transport
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-SMEINST-1-2014
IT-1-2014-1 Small business innovation research for Transport