Summary
Electrical energy storage (EES) is a fundamental enabler to the deployment of renewable energy and provides cost-savings in other markets. The market is projected to grow from 1.1 GW in 2016 to 21.6 GW in 2025. Pumped hydroelectric storage (PHS) accounts for 98% of global energy storage, however they are geographically limited, environmentally impactful and require huge upfront costs. Other state-of-the-art solutions available in the market i.e. batteries for EES cannot scale-up to meet the demands on the electrical grids and networks. This results in an underutilisation or ineffective use of renewable energy sources. Teraloop has created a highly scalable, kinetic energy storage system, which draws upon proven technologies (flywheel energy storage, magnetic levitation and brushless motors.), innovatively configured for grid-scale storage with minimal visual and environmental footprint. The scalability of the product results in applicability from voltage support to load following.
The development roadmap comprises three major phases: Phase1: Market & technical feasibility: Utilise SME instrument phase 1 funding to complete market analysis – define requirements and favourable market conditions. Find a demonstrator partner and explore engineering requirements. Phase2: An industrial demonstrator of 10MW Teraloop: Utilise SME instrument phase2 funding to find suitable stakeholders and subcontractors. Build, run and test Teraloop. Expand IP, communicate and disseminate phase 2 activities. Phase3: Commercialise 10MW Teraloop and develop 100MW Teraloop: Teraloop recognises their ambitious vision and mission will only be delivered through strategic partnerships with investors, technology companies, the energy storage industry and the public sector.
The development roadmap comprises three major phases: Phase1: Market & technical feasibility: Utilise SME instrument phase 1 funding to complete market analysis – define requirements and favourable market conditions. Find a demonstrator partner and explore engineering requirements. Phase2: An industrial demonstrator of 10MW Teraloop: Utilise SME instrument phase2 funding to find suitable stakeholders and subcontractors. Build, run and test Teraloop. Expand IP, communicate and disseminate phase 2 activities. Phase3: Commercialise 10MW Teraloop and develop 100MW Teraloop: Teraloop recognises their ambitious vision and mission will only be delivered through strategic partnerships with investors, technology companies, the energy storage industry and the public sector.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/816728 |
Start date: | 01-05-2018 |
End date: | 30-09-2018 |
Total budget - Public funding: | 71 429,00 Euro - 50 000,00 Euro |
Cordis data
Original description
Electrical energy storage (EES) is a fundamental enabler to the deployment of renewable energy and provides cost-savings in other markets. The market is projected to grow from 1.1 GW in 2016 to 21.6 GW in 2025. Pumped hydroelectric storage (PHS) accounts for 98% of global energy storage, however they are geographically limited, environmentally impactful and require huge upfront costs. Other state-of-the-art solutions available in the market i.e. batteries for EES cannot scale-up to meet the demands on the electrical grids and networks. This results in an underutilisation or ineffective use of renewable energy sources. Teraloop has created a highly scalable, kinetic energy storage system, which draws upon proven technologies (flywheel energy storage, magnetic levitation and brushless motors.), innovatively configured for grid-scale storage with minimal visual and environmental footprint. The scalability of the product results in applicability from voltage support to load following.The development roadmap comprises three major phases: Phase1: Market & technical feasibility: Utilise SME instrument phase 1 funding to complete market analysis – define requirements and favourable market conditions. Find a demonstrator partner and explore engineering requirements. Phase2: An industrial demonstrator of 10MW Teraloop: Utilise SME instrument phase2 funding to find suitable stakeholders and subcontractors. Build, run and test Teraloop. Expand IP, communicate and disseminate phase 2 activities. Phase3: Commercialise 10MW Teraloop and develop 100MW Teraloop: Teraloop recognises their ambitious vision and mission will only be delivered through strategic partnerships with investors, technology companies, the energy storage industry and the public sector.
Status
CLOSEDCall topic
EIC-SMEInst-2018-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all