Summary
Lightyear, an international team of 90 engineers including triple winners of the World Solar Challenge, experienced engineers (180+ years) from the aerospace, racing and automotive industry (e.g. ASML, Tesla, Ferrari and Inalfa) and alumni of the Eindhoven University of Technology, develops the first commercially available electric solar car in the world that charges itself: the Lightyear One. The extremely efficient family car will be able to drive for weeks or even months on self-generated solar energy. The engineers started from the rationale that the car should be incredibly efficient, in order to make an independent entity having its own energy source. To achieve this, Lightyear had to minimize the car’s energy consumption and maximize its energy input, by using four inwheel motors instead of one rigid motor, lowering the total mass of the car by using lightweight biobased materials, redesign to improve aerodynamics, developing a new battery pack; integrating their in-house custom developed solar panels on the roof and the bonnet of the car. Result: a car that excellences in driving range, in weight, in energy consumption, sustainability and operation costs compared to market's-state-of-the-art. Range anxiety, dependency on energy (charging) infrastructure and the use of non-renewable/inefficient energy sources to charge your car will belong to the past. In this project, Lightyear aims to develop, validate and demonstrate the first Lightyear One and associated assembly line, bringing their innovation from TRL 5/6 to 8. Lightyear expects to produce the first 10 signature cars in 2020, and start serial production from 2021 onwards. EBITDA is expected to turn positive in 2021 with a fivefold increase of FTEs. This development reinforces competitiveness and performance of European transport manufacturing industries on the global market.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/848620 |
Start date: | 01-02-2019 |
End date: | 31-01-2021 |
Total budget - Public funding: | 3 570 500,00 Euro - 2 499 350,00 Euro |
Cordis data
Original description
Lightyear, an international team of 90 engineers including triple winners of the World Solar Challenge, experienced engineers (180+ years) from the aerospace, racing and automotive industry (e.g. ASML, Tesla, Ferrari and Inalfa) and alumni of the Eindhoven University of Technology, develops the first commercially available electric solar car in the world that charges itself: the Lightyear One. The extremely efficient family car will be able to drive for weeks or even months on self-generated solar energy. The engineers started from the rationale that the car should be incredibly efficient, in order to make an independent entity having its own energy source. To achieve this, Lightyear had to minimize the car’s energy consumption and maximize its energy input, by using four inwheel motors instead of one rigid motor, lowering the total mass of the car by using lightweight biobased materials, redesign to improve aerodynamics, developing a new battery pack; integrating their in-house custom developed solar panels on the roof and the bonnet of the car. Result: a car that excellences in driving range, in weight, in energy consumption, sustainability and operation costs compared to market's-state-of-the-art. Range anxiety, dependency on energy (charging) infrastructure and the use of non-renewable/inefficient energy sources to charge your car will belong to the past. In this project, Lightyear aims to develop, validate and demonstrate the first Lightyear One and associated assembly line, bringing their innovation from TRL 5/6 to 8. Lightyear expects to produce the first 10 signature cars in 2020, and start serial production from 2021 onwards. EBITDA is expected to turn positive in 2021 with a fivefold increase of FTEs. This development reinforces competitiveness and performance of European transport manufacturing industries on the global market.Status
CLOSEDCall topic
EIC-SMEInst-2018-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all