Summary
SME is developing new nature based bioleaching routes for different organics and metals containing ores/wastes having metal compounds trapped in metallo-organic complexes. The effectiveness of the bioleaching process of ores considered so far as “low grade” is raised by 3 factors in BiotaTec (BT) approach: higher yield of metals, lower energy costs due to generation of methane gas, no additional costs for cooling of bioleaching. Bioleaching is growingly popular for processing low-grade ores as a cheap, reliable, efficient and environmentally friendly way to extract metals.
In many ores, metals are present in 2 forms - as sulphides or in organo-metallic compounds called metallo-porphyrins. Although there is an extensive list of bioleaching studies using sulphide concentrates, much less is known about the microbial decomposition of organo-metallic complexes. The presence of organic material is believed to be the obstacle of efficient bioleaching of metals from specific European ores. The key component of the BT solutions is nutritional medium which is effective in activating special consortia of microorganisms.
BT has found and deposited a mixture of hetherotrophic neutrophils and methanogenic archaea - a consortium of microorganisms that degrades the organic complex in anaerobic conditions at neutral pH and also leaches some metal compounds in the same anaerobic process. BiotaTec has drafted a new possible route for a low-grade ore /end of life products bioleaching process. The objective of a project is to evaluate the economic feasibility of the developed technological solution for ores in Europe - in situations where extracting valuable metals from ores has been either impossible or not cost-efficient and environmentally friendly due to large quantities of strong acids needed to break the complex. BiotaTec foresees becoming a provider of proprietary nutritional medium and support services for mining industries.
In many ores, metals are present in 2 forms - as sulphides or in organo-metallic compounds called metallo-porphyrins. Although there is an extensive list of bioleaching studies using sulphide concentrates, much less is known about the microbial decomposition of organo-metallic complexes. The presence of organic material is believed to be the obstacle of efficient bioleaching of metals from specific European ores. The key component of the BT solutions is nutritional medium which is effective in activating special consortia of microorganisms.
BT has found and deposited a mixture of hetherotrophic neutrophils and methanogenic archaea - a consortium of microorganisms that degrades the organic complex in anaerobic conditions at neutral pH and also leaches some metal compounds in the same anaerobic process. BiotaTec has drafted a new possible route for a low-grade ore /end of life products bioleaching process. The objective of a project is to evaluate the economic feasibility of the developed technological solution for ores in Europe - in situations where extracting valuable metals from ores has been either impossible or not cost-efficient and environmentally friendly due to large quantities of strong acids needed to break the complex. BiotaTec foresees becoming a provider of proprietary nutritional medium and support services for mining industries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/782070 |
Start date: | 01-08-2017 |
End date: | 31-01-2018 |
Total budget - Public funding: | 71 429,00 Euro - 50 000,00 Euro |
Cordis data
Original description
SME is developing new nature based bioleaching routes for different organics and metals containing ores/wastes having metal compounds trapped in metallo-organic complexes. The effectiveness of the bioleaching process of ores considered so far as “low grade” is raised by 3 factors in BiotaTec (BT) approach: higher yield of metals, lower energy costs due to generation of methane gas, no additional costs for cooling of bioleaching. Bioleaching is growingly popular for processing low-grade ores as a cheap, reliable, efficient and environmentally friendly way to extract metals.In many ores, metals are present in 2 forms - as sulphides or in organo-metallic compounds called metallo-porphyrins. Although there is an extensive list of bioleaching studies using sulphide concentrates, much less is known about the microbial decomposition of organo-metallic complexes. The presence of organic material is believed to be the obstacle of efficient bioleaching of metals from specific European ores. The key component of the BT solutions is nutritional medium which is effective in activating special consortia of microorganisms.
BT has found and deposited a mixture of hetherotrophic neutrophils and methanogenic archaea - a consortium of microorganisms that degrades the organic complex in anaerobic conditions at neutral pH and also leaches some metal compounds in the same anaerobic process. BiotaTec has drafted a new possible route for a low-grade ore /end of life products bioleaching process. The objective of a project is to evaluate the economic feasibility of the developed technological solution for ores in Europe - in situations where extracting valuable metals from ores has been either impossible or not cost-efficient and environmentally friendly due to large quantities of strong acids needed to break the complex. BiotaTec foresees becoming a provider of proprietary nutritional medium and support services for mining industries.
Status
CLOSEDCall topic
SMEInst-11-2016-2017Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials