Summary
CHEOPS proposes to develop three different Hall Effect Thruster electric propulsion systems: a dual mode EPS for GEO applications, a low power for LEO applications and a >20 kW high thrust EPS for exploration applications. Each of these will be developed according to market needs and drivers applying incremental technology changes to existing EPS products. The development approach will follow the ESA ECSS approach and the dual mode and low power are targeting a System PDR review with 42 months from the project start. Development will cover the following elements: thruster, cathode, PPU and FMS. The project is perfectly aligned to the SRC guidelines published with the call. Through a detailed development plan the project will demonstrate their ability to achieve by the end of CHEOPS Phase II (2023) the following: a) TRL7-8 for dual mode and low power b) high power HET EPS TRL6. Common transverse activities will include advanced numerical design tools for electric propulsion which will further the understanding of the observable behaviour and interactions with the satellite platform and predict performances of a given design. This includes alternative propellants and the ability to estimate the system lifetime. Finally significant progress will be made in establishing a HET performances measurement standard and developing advanced non-intrusive tests for measuring thruster erosion. The CHEOPS consortium is led by SNECMA and is comprised of representatives of the biggest European Prime satellite makers, the full EPS supply chain and supported by academia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/730135 |
Start date: | 01-11-2016 |
End date: | 30-04-2021 |
Total budget - Public funding: | 14 792 359,43 Euro - 10 960 028,00 Euro |
Cordis data
Original description
CHEOPS proposes to develop three different Hall Effect Thruster electric propulsion systems: a dual mode EPS for GEO applications, a low power for LEO applications and a >20 kW high thrust EPS for exploration applications. Each of these will be developed according to market needs and drivers applying incremental technology changes to existing EPS products. The development approach will follow the ESA ECSS approach and the dual mode and low power are targeting a System PDR review with 42 months from the project start. Development will cover the following elements: thruster, cathode, PPU and FMS. The project is perfectly aligned to the SRC guidelines published with the call. Through a detailed development plan the project will demonstrate their ability to achieve by the end of CHEOPS Phase II (2023) the following: a) TRL7-8 for dual mode and low power b) high power HET EPS TRL6. Common transverse activities will include advanced numerical design tools for electric propulsion which will further the understanding of the observable behaviour and interactions with the satellite platform and predict performances of a given design. This includes alternative propellants and the ability to estimate the system lifetime. Finally significant progress will be made in establishing a HET performances measurement standard and developing advanced non-intrusive tests for measuring thruster erosion. The CHEOPS consortium is led by SNECMA and is comprised of representatives of the biggest European Prime satellite makers, the full EPS supply chain and supported by academia.Status
CLOSEDCall topic
COMPET-3-2016-aUpdate Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector
H2020-EU.2.1.6.1.1. Safeguard and further develop a competitive, sustainable and entrepreneurial space industry and research community and strengthen European non-dependence in space systems