Summary
Since several years, the industrialisation of the satellite market has been accelerated. In particular, the market for telecom satellites has changed significantly, because of several new players and numerous plans for satellite constellations, such as OneWeb or Starlink.
In order to increase competitiveness and to disrupt the electric propulsion market, we are proposing the development of the iodine Fed Advanced Cusp field Thruster (iFACT).
iFACT consists of an Advanced Cusp Field Thruster (ACFT), a simple PPU, a thermionic Emitter, a novel propellant feeding architecture, which is optimised for iodine. The ACFT has been invented by Airbus in 2017. Due to its simplicity, paired with efficiency, the fact that it is easy to ignite and its excellent performance data with iodine, it is tailored as key element for an extremely simple, efficient and low cost Electric Propulsion Subsystem (EPS). The baseline thruster (300 W input power) can be used with a simple thermionic cathode. The simple operation of the ACFT enables a reduced (wrt. number of parts and control circuits) but efficient PPU. This components are paired with an unique iodine feeding architecture which is capable to disrupt the electric propulsion market.
Based on this, the proposal will focus on:
- Iodine as disruptive propellant for electric thruster,
- maturation of the Advanced Cusp Field Thruster (ACFT) as disruptive thruster principle, in three different power classes,
- development of an novel, disruptive, extremly simplified low cost Power Processing Unit (PPU),
- use of calcium aluminate (C12A7) as disruptive, low-work function emitter material for cathodes,
- development of an European Iodine compatible long firing test facility.
In order to increase competitiveness and to disrupt the electric propulsion market, we are proposing the development of the iodine Fed Advanced Cusp field Thruster (iFACT).
iFACT consists of an Advanced Cusp Field Thruster (ACFT), a simple PPU, a thermionic Emitter, a novel propellant feeding architecture, which is optimised for iodine. The ACFT has been invented by Airbus in 2017. Due to its simplicity, paired with efficiency, the fact that it is easy to ignite and its excellent performance data with iodine, it is tailored as key element for an extremely simple, efficient and low cost Electric Propulsion Subsystem (EPS). The baseline thruster (300 W input power) can be used with a simple thermionic cathode. The simple operation of the ACFT enables a reduced (wrt. number of parts and control circuits) but efficient PPU. This components are paired with an unique iodine feeding architecture which is capable to disrupt the electric propulsion market.
Based on this, the proposal will focus on:
- Iodine as disruptive propellant for electric thruster,
- maturation of the Advanced Cusp Field Thruster (ACFT) as disruptive thruster principle, in three different power classes,
- development of an novel, disruptive, extremly simplified low cost Power Processing Unit (PPU),
- use of calcium aluminate (C12A7) as disruptive, low-work function emitter material for cathodes,
- development of an European Iodine compatible long firing test facility.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/870336 |
Start date: | 01-01-2020 |
End date: | 30-06-2022 |
Total budget - Public funding: | 1 999 595,00 Euro - 1 999 595,00 Euro |
Cordis data
Original description
Since several years, the industrialisation of the satellite market has been accelerated. In particular, the market for telecom satellites has changed significantly, because of several new players and numerous plans for satellite constellations, such as OneWeb or Starlink.In order to increase competitiveness and to disrupt the electric propulsion market, we are proposing the development of the iodine Fed Advanced Cusp field Thruster (iFACT).
iFACT consists of an Advanced Cusp Field Thruster (ACFT), a simple PPU, a thermionic Emitter, a novel propellant feeding architecture, which is optimised for iodine. The ACFT has been invented by Airbus in 2017. Due to its simplicity, paired with efficiency, the fact that it is easy to ignite and its excellent performance data with iodine, it is tailored as key element for an extremely simple, efficient and low cost Electric Propulsion Subsystem (EPS). The baseline thruster (300 W input power) can be used with a simple thermionic cathode. The simple operation of the ACFT enables a reduced (wrt. number of parts and control circuits) but efficient PPU. This components are paired with an unique iodine feeding architecture which is capable to disrupt the electric propulsion market.
Based on this, the proposal will focus on:
- Iodine as disruptive propellant for electric thruster,
- maturation of the Advanced Cusp Field Thruster (ACFT) as disruptive thruster principle, in three different power classes,
- development of an novel, disruptive, extremly simplified low cost Power Processing Unit (PPU),
- use of calcium aluminate (C12A7) as disruptive, low-work function emitter material for cathodes,
- development of an European Iodine compatible long firing test facility.
Status
CLOSEDCall topic
SPACE-13-TEC-2019Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector