HEMPT-NG2 | High Efficiency Multistage Plasma Thruster - Next Generation 2

Summary
The objective of the HEMPT-NG2 consortium is to continue to develop, simulate, build and qualify the High Efficiency Multistage Plasma Thruster – Next Generation (HEMPT-NG2) system, with the application to operate a LEO-Thruster for use of station keeping, orbit raising and orbit manoeuvring of satellites in constellations. The HEMPT-NG2 project will contribute to increase the competitiveness of space electrical propulsion systems developed in Europe by developing an integrated solution based on the HEMPT (Highly Efficient Multistage Plasma Thruster) technology for the different LEO satellites. This project will increase the capacity to compete within a worldwide market in term of cost, performances and production capacity. The availability of such competitive electrical propulsion system is a key to the success of the European space sector and the emerging space applications. HEMPT-NG will also reduce dependency to foreign supplier to ensure an independent access to space in Europe. So the interest of the whole consortium (Aerospazio Tecnologie SARL, ASP & Space GmbH, University Greiswald, Thales Alenia Space Belgium, Thales Alenia Space UK and Thales Germany) is to increase the competitiveness of space electrical propulsion systems developed in Europe by developing an integrated solution based on the HEMPT technology for the LEO satellites. The HEMPT technology has significant advantages compared to the other electrical propulsion technologies that are currently available (Hall effect thrusters and Grid ion thrusters). The lower mass and the ability to choose between high thrust and low propellant consumption operations will allow lighter or more powerful satellites. Low erosion will significantly improve the life duration of the thrusters. And finally the replacement of the xenon by the krypton that is more common in the atmosphere will lower the economic and ecological cost for satellite propellant.
Results, demos, etc. Show all and search (3)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101004140
Start date: 01-01-2021
End date: 31-12-2023
Total budget - Public funding: 5 630 713,00 Euro - 3 998 499,00 Euro
Cordis data

Original description

The objective of the HEMPT-NG2 consortium is to continue to develop, simulate, build and qualify the High Efficiency Multistage Plasma Thruster – Next Generation (HEMPT-NG2) system, with the application to operate a LEO-Thruster for use of station keeping, orbit raising and orbit manoeuvring of satellites in constellations. The HEMPT-NG2 project will contribute to increase the competitiveness of space electrical propulsion systems developed in Europe by developing an integrated solution based on the HEMPT (Highly Efficient Multistage Plasma Thruster) technology for the different LEO satellites. This project will increase the capacity to compete within a worldwide market in term of cost, performances and production capacity. The availability of such competitive electrical propulsion system is a key to the success of the European space sector and the emerging space applications. HEMPT-NG will also reduce dependency to foreign supplier to ensure an independent access to space in Europe. So the interest of the whole consortium (Aerospazio Tecnologie SARL, ASP & Space GmbH, University Greiswald, Thales Alenia Space Belgium, Thales Alenia Space UK and Thales Germany) is to increase the competitiveness of space electrical propulsion systems developed in Europe by developing an integrated solution based on the HEMPT technology for the LEO satellites. The HEMPT technology has significant advantages compared to the other electrical propulsion technologies that are currently available (Hall effect thrusters and Grid ion thrusters). The lower mass and the ability to choose between high thrust and low propellant consumption operations will allow lighter or more powerful satellites. Low erosion will significantly improve the life duration of the thrusters. And finally the replacement of the xenon by the krypton that is more common in the atmosphere will lower the economic and ecological cost for satellite propellant.

Status

SIGNED

Call topic

SPACE-28-TEC-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)