SUN-PILOT | Subwavelength Nanostructure Pilot (Sun-Pilot)

Summary
Nanostructured surfaces that engineer the interaction between an object and its surroundings are a subject of scientific and manufacturing importance. Nature routinely creates nanostructured surfaces with fascinating properties, such as antireflective moth eyes, self-cleaning lotus leaves, colourful butterfly wings, and water harvesting desert beetles. Well defined nanostructured surfaces have huge commercial potential due to product enhancement: reduced reflectivity in photonic devices and solar panels, antiglare plastic parts for the automotive industry, hydrophobic self-cleaning surfaces for smart packaging, antireflective and smudge-free smartphone displays, and biofouling resistant marine and water treatment systems. Unfortunately, the lack of cost-effective, scalable, nanopatterning methods is a major hurdle for the commercial exploitation of nanopatterned surfaces. SUN-PILOT will address this challenge by developing a novel and cost effective platform for up-scaling sub-wavelength nanostructures fabrication techniques that can be applied to curved surfaces such as optical lenses, and the mass production of metal moulds for injection moulding of plastic parts. The expected impact of SUN-PILOT for the Optics Industry is a disruptive technology that will boost the performance/cost ratio of photonic devices by piloting mass fabrication of scratch and wear resistant nanopatterned antireflective optical surfaces. Significant enhancement will be achieved in the efficiency of optical components and systems incorporating these devices, such as laser systems, electronic displays, security cameras and medical devices. The Automotive Industry will benefit from a novel method to produce functional surfaces at lower cost and lighter weight than existing lamination methods. This proposal brings together scientists and engineers to span innovation, business development and the product cycle from suppliers to end users and will ensure a leadership role of for Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/760915
Start date: 01-01-2018
End date: 30-06-2022
Total budget - Public funding: 7 991 298,00 Euro - 7 056 398,00 Euro
Cordis data

Original description

Nanostructured surfaces that engineer the interaction between an object and its surroundings are a subject of scientific and manufacturing importance. Nature routinely creates nanostructured surfaces with fascinating properties, such as antireflective moth eyes, self-cleaning lotus leaves, colourful butterfly wings, and water harvesting desert beetles. Well defined nanostructured surfaces have huge commercial potential due to product enhancement: reduced reflectivity in photonic devices and solar panels, antiglare plastic parts for the automotive industry, hydrophobic self-cleaning surfaces for smart packaging, antireflective and smudge-free smartphone displays, and biofouling resistant marine and water treatment systems. Unfortunately, the lack of cost-effective, scalable, nanopatterning methods is a major hurdle for the commercial exploitation of nanopatterned surfaces. SUN-PILOT will address this challenge by developing a novel and cost effective platform for up-scaling sub-wavelength nanostructures fabrication techniques that can be applied to curved surfaces such as optical lenses, and the mass production of metal moulds for injection moulding of plastic parts. The expected impact of SUN-PILOT for the Optics Industry is a disruptive technology that will boost the performance/cost ratio of photonic devices by piloting mass fabrication of scratch and wear resistant nanopatterned antireflective optical surfaces. Significant enhancement will be achieved in the efficiency of optical components and systems incorporating these devices, such as laser systems, electronic displays, security cameras and medical devices. The Automotive Industry will benefit from a novel method to produce functional surfaces at lower cost and lighter weight than existing lamination methods. This proposal brings together scientists and engineers to span innovation, business development and the product cycle from suppliers to end users and will ensure a leadership role of for Europe.

Status

CLOSED

Call topic

PILOTS-03-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
H2020-EU.2.1.2.0. INDUSTRIAL LEADERSHIP - Nanotechnologies - Cross-cutting call topics
H2020-NMBP-PILOTS-2017
PILOTS-03-2017 Pilot Lines for Manufacturing of Nanotextured surfaces with mechanically enhanced properties