SODaH | Software Defined Space Optical Data Highway

Summary
The objectives of SODaH (Software Defined Space Optical Data Highway) are to mature the key photonic technologies in order to enable the implementation of an OISL (Optical Inter Satellites Links) based “Fiber like Network” in the sky for next generation satellites constellations. In such architectures, satellites are the nodes of a moving network interconnected by OISL, that have to address end users (citizens, corporate users, governmental, machines) with an ubiquitous and reliable coverage at high throughput (100 Mbps). If the Laser Communication Terminal (LCT) are now a mature and flight proven technology for high end applications, their efficient use and integration in transparent, reconfigurable and smart miniaturized telecom payload is still a challenge.

A Photonic Modulation, Routing and Digitalization (P_MRD) Unit which performs the interface between the satellites OISLs (typically four per satellite) and the payload digital processor (connected to end users and gateway via RF antennas) is key to enable flexibility, efficient routing, redundancy, and advanced multiplexing of signals. In the frame of SODaH, the photonic equipment of a miniaturized P_MRD unit (photonic sources using DWDM standard, MUX/DEMUX, an optical switch matrix, Low noise amplifier, and photonic receiver) will be developed in a design to cost and design to manufacture approach. This will assure their market relevance and readiness, by leveraging high performances terrestrial communication photonic components on one hand and radiation screened reliable automotive EEE components on the other hands.

Eventually demonstrators of each device will be manufactured and environmentally tested before to be assembled and tested together to demonstrate the added value and maturity of the P_MRD Unit. The demonstrator will be made available for showcase to the communication satellite community for paving the way for a short path from lab to market.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/821878
Start date: 01-11-2018
End date: 31-10-2020
Total budget - Public funding: 3 106 085,00 Euro - 2 995 940,00 Euro
Cordis data

Original description

The objectives of SODaH (Software Defined Space Optical Data Highway) are to mature the key photonic technologies in order to enable the implementation of an OISL (Optical Inter Satellites Links) based “Fiber like Network” in the sky for next generation satellites constellations. In such architectures, satellites are the nodes of a moving network interconnected by OISL, that have to address end users (citizens, corporate users, governmental, machines) with an ubiquitous and reliable coverage at high throughput (100 Mbps). If the Laser Communication Terminal (LCT) are now a mature and flight proven technology for high end applications, their efficient use and integration in transparent, reconfigurable and smart miniaturized telecom payload is still a challenge.

A Photonic Modulation, Routing and Digitalization (P_MRD) Unit which performs the interface between the satellites OISLs (typically four per satellite) and the payload digital processor (connected to end users and gateway via RF antennas) is key to enable flexibility, efficient routing, redundancy, and advanced multiplexing of signals. In the frame of SODaH, the photonic equipment of a miniaturized P_MRD unit (photonic sources using DWDM standard, MUX/DEMUX, an optical switch matrix, Low noise amplifier, and photonic receiver) will be developed in a design to cost and design to manufacture approach. This will assure their market relevance and readiness, by leveraging high performances terrestrial communication photonic components on one hand and radiation screened reliable automotive EEE components on the other hands.

Eventually demonstrators of each device will be manufactured and environmentally tested before to be assembled and tested together to demonstrate the added value and maturity of the P_MRD Unit. The demonstrator will be made available for showcase to the communication satellite community for paving the way for a short path from lab to market.

Status

CLOSED

Call topic

SPACE-15-TEC-2018

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector
H2020-SPACE-2018
SPACE-15-TEC-2018 Satellite communication technologies
H2020-EU.2.1.6.2. Enabling advances in space technology
H2020-SPACE-2018
SPACE-15-TEC-2018 Satellite communication technologies