Summary
INITIATE proposes a novel symbiotic process to produce urea from steel residual gases. The project will demonstrate a reduction in; primary energy intensity of 30%; carbon footprint of 95%; the raw material intensity of 40%; and waste production of 90%. Additional to this level of reduction, the concept represents a positive business case. INITIATE will demonstrate operating reliability and technology-based innovations in a real industrial setting at TRL7 by producing urea NH3 from steel residual gases as part of three test campaigns spanning six weeks each. The reduction in primary energy intensity, carbon footprint, raw material intensity and waste production will be assessed and verified on a regional and European level by advanced dynamic modelling and Life Cycle Assessment commiserated with ISO 14404 guidelines.
The project will develop a commercial implementation roadmap for immediate deployment of INITIATE after project conclusion and for ensuring roll-out of INITIATE and similar symbiotic systems. Designing a robust and bankable first-of-a-kind commercial plant to produce urea from residual steel gases will allow implementation after project conclusion. Long term roll-out will be enabled by defining collaborative strategy for stakeholders alignment to implement INITIATE and similar symbiotic systems. Finally, effective and inclusive communication and dissemination of project results are maximized by organizing summer schools and creation of Massive Open Online Course.
INITIATE will take advantage of a consortium spanning the full value chain, including major steel and urea industrial players (Arcelor Mittal, SSAB, Stamicarbon, NextChem), functional material suppliers (Johnson Matthey, Kisuma Chemicals), multi-disciplinary researchers (TNO, POLIMI, Radboud University) and experienced promoters of CCUS, circularity and symbiosis topics to public (CO2 Value Europe).
The project will develop a commercial implementation roadmap for immediate deployment of INITIATE after project conclusion and for ensuring roll-out of INITIATE and similar symbiotic systems. Designing a robust and bankable first-of-a-kind commercial plant to produce urea from residual steel gases will allow implementation after project conclusion. Long term roll-out will be enabled by defining collaborative strategy for stakeholders alignment to implement INITIATE and similar symbiotic systems. Finally, effective and inclusive communication and dissemination of project results are maximized by organizing summer schools and creation of Massive Open Online Course.
INITIATE will take advantage of a consortium spanning the full value chain, including major steel and urea industrial players (Arcelor Mittal, SSAB, Stamicarbon, NextChem), functional material suppliers (Johnson Matthey, Kisuma Chemicals), multi-disciplinary researchers (TNO, POLIMI, Radboud University) and experienced promoters of CCUS, circularity and symbiosis topics to public (CO2 Value Europe).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/958318 |
Start date: | 01-11-2020 |
End date: | 31-10-2025 |
Total budget - Public funding: | 23 148 255,00 Euro - 21 296 571,00 Euro |
Cordis data
Original description
INITIATE proposes a novel symbiotic process to produce urea from steel residual gases. The project will demonstrate a reduction in; primary energy intensity of 30%; carbon footprint of 95%; the raw material intensity of 40%; and waste production of 90%. Additional to this level of reduction, the concept represents a positive business case. INITIATE will demonstrate operating reliability and technology-based innovations in a real industrial setting at TRL7 by producing urea NH3 from steel residual gases as part of three test campaigns spanning six weeks each. The reduction in primary energy intensity, carbon footprint, raw material intensity and waste production will be assessed and verified on a regional and European level by advanced dynamic modelling and Life Cycle Assessment commiserated with ISO 14404 guidelines.The project will develop a commercial implementation roadmap for immediate deployment of INITIATE after project conclusion and for ensuring roll-out of INITIATE and similar symbiotic systems. Designing a robust and bankable first-of-a-kind commercial plant to produce urea from residual steel gases will allow implementation after project conclusion. Long term roll-out will be enabled by defining collaborative strategy for stakeholders alignment to implement INITIATE and similar symbiotic systems. Finally, effective and inclusive communication and dissemination of project results are maximized by organizing summer schools and creation of Massive Open Online Course.
INITIATE will take advantage of a consortium spanning the full value chain, including major steel and urea industrial players (Arcelor Mittal, SSAB, Stamicarbon, NextChem), functional material suppliers (Johnson Matthey, Kisuma Chemicals), multi-disciplinary researchers (TNO, POLIMI, Radboud University) and experienced promoters of CCUS, circularity and symbiosis topics to public (CO2 Value Europe).
Status
SIGNEDCall topic
CE-SPIRE-01-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.5. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing