Summary
Metagenomes comprise enormous reservoirs coding for proteins with useful activities. Unfortunately, harvesting this reservoir is difficult, because useful candidates are rare and hidden in an overwhelming majority of irrelevant genes. Screening campaigns of metagenomic libraries thus require massive capital-expenditure for robotic systems and much manpower, making them expensive, slow and available to very few users. To enable valorisation of the potential of the metagenome, this project assembles an interdisciplinary and intersectoral consortium that will integrate a range of technologies into a platform designed to beat the odds of identifying library hits faster, more efficiently and by a wider user base. Exploration and exploitation of the metagenome will be made faster and more successful by (i) ultrahigh-throughput screening in picoliter droplets that dramatically lowers the cost per assay to well below 0.01 cents and allows throughput of 10e7 assays per hour; (ii) workflows that streamline and increase the yield of library construction and functional expression and (iii) workflows for efficient bioinformatic analysis of hits based on user-friendly software solutions for metagenome analysis. Emphasis is put on technologies that are straightforwardly implemented in non-specialist labs, maximising the impact of METAFLUIDICS. This platform will be used to identify enzymes for biosynthesis of therapeutic small molecules, for green bioenergy conversion, bioremediation, food chemistry and other industrial applications
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/685474 |
Start date: | 01-06-2016 |
End date: | 30-11-2020 |
Total budget - Public funding: | 8 808 363,00 Euro - 8 808 363,00 Euro |
Cordis data
Original description
Metagenomes comprise enormous reservoirs coding for proteins with useful activities. Unfortunately, harvesting this reservoir is difficult, because useful candidates are rare and hidden in an overwhelming majority of irrelevant genes. Screening campaigns of metagenomic libraries thus require massive capital-expenditure for robotic systems and much manpower, making them expensive, slow and available to very few users. To enable valorisation of the potential of the metagenome, this project assembles an interdisciplinary and intersectoral consortium that will integrate a range of technologies into a platform designed to beat the odds of identifying library hits faster, more efficiently and by a wider user base. Exploration and exploitation of the metagenome will be made faster and more successful by (i) ultrahigh-throughput screening in picoliter droplets that dramatically lowers the cost per assay to well below 0.01 cents and allows throughput of 10e7 assays per hour; (ii) workflows that streamline and increase the yield of library construction and functional expression and (iii) workflows for efficient bioinformatic analysis of hits based on user-friendly software solutions for metagenome analysis. Emphasis is put on technologies that are straightforwardly implemented in non-specialist labs, maximising the impact of METAFLUIDICS. This platform will be used to identify enzymes for biosynthesis of therapeutic small molecules, for green bioenergy conversion, bioremediation, food chemistry and other industrial applicationsStatus
CLOSEDCall topic
BIOTEC-6-2015Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all