Summary
Wide global deployment of electric vehicles (EVs) is necessary to reduce transport related emissions, as transport is responsible for around a quarter of EU greenhouse gas (GHG) emissions, and more than two thirds of transport-related GHG emissions are from road transport. SUBLIME’s overall aim is to significantly increase EV adoption by taking on the technical challenges that are presented by the consumer needs - especially the reduction in costs of EVs, increasing their capabilities regarding long distance traveling and fast charging.
SUBLIME concept entails development of a complete value chain, from requirements to testing, for new sulfide electrolyte based solid-state battery cells with high capacity and high voltage stability (scalable to mass production) to reach gravimetric energy density of >450 Wh/kg and volumetric Energy density of >1200 Wh/l. SUBLIME proposes the usage of high capacity and high voltage electrode materials. Li metal as anode (LiM), Ni rich NMC material e.g. or NMC90505 as cathode are foreseen to be used to achieve the targeted energy density. The battery will be inherently safe and will be able to operate at room temperature or lower; thus facilitating the start of the vehicle in broad operating conditions. Interfaces showing a fast Li-ion transport will be developed in the project and partners will focus on developing intimate and (electro)-chemically stable interfaces with strong mechanical properties. The interfaces will be specifically designed to increase stability of the component and the malleable nature of the sulfide enables good interfacial contact.
SUBLIME will bring the sulfide electrolyte solid-state battery technology to TRL 6. The scale-up to pre-industrial volume will ensure that results are, indeed, scalable to large-volume commercial manufacturing. SUBLIME will deliver a roadmap to 2030, enabling eventual market entry by a very strong constellation of European partners, to bring about the transition towards electric
SUBLIME concept entails development of a complete value chain, from requirements to testing, for new sulfide electrolyte based solid-state battery cells with high capacity and high voltage stability (scalable to mass production) to reach gravimetric energy density of >450 Wh/kg and volumetric Energy density of >1200 Wh/l. SUBLIME proposes the usage of high capacity and high voltage electrode materials. Li metal as anode (LiM), Ni rich NMC material e.g. or NMC90505 as cathode are foreseen to be used to achieve the targeted energy density. The battery will be inherently safe and will be able to operate at room temperature or lower; thus facilitating the start of the vehicle in broad operating conditions. Interfaces showing a fast Li-ion transport will be developed in the project and partners will focus on developing intimate and (electro)-chemically stable interfaces with strong mechanical properties. The interfaces will be specifically designed to increase stability of the component and the malleable nature of the sulfide enables good interfacial contact.
SUBLIME will bring the sulfide electrolyte solid-state battery technology to TRL 6. The scale-up to pre-industrial volume will ensure that results are, indeed, scalable to large-volume commercial manufacturing. SUBLIME will deliver a roadmap to 2030, enabling eventual market entry by a very strong constellation of European partners, to bring about the transition towards electric
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/875028 |
Start date: | 01-05-2020 |
End date: | 31-10-2024 |
Total budget - Public funding: | 7 892 792,00 Euro - 7 892 792,00 Euro |
Cordis data
Original description
Wide global deployment of electric vehicles (EVs) is necessary to reduce transport related emissions, as transport is responsible for around a quarter of EU greenhouse gas (GHG) emissions, and more than two thirds of transport-related GHG emissions are from road transport. SUBLIME’s overall aim is to significantly increase EV adoption by taking on the technical challenges that are presented by the consumer needs - especially the reduction in costs of EVs, increasing their capabilities regarding long distance traveling and fast charging.SUBLIME concept entails development of a complete value chain, from requirements to testing, for new sulfide electrolyte based solid-state battery cells with high capacity and high voltage stability (scalable to mass production) to reach gravimetric energy density of >450 Wh/kg and volumetric Energy density of >1200 Wh/l. SUBLIME proposes the usage of high capacity and high voltage electrode materials. Li metal as anode (LiM), Ni rich NMC material e.g. or NMC90505 as cathode are foreseen to be used to achieve the targeted energy density. The battery will be inherently safe and will be able to operate at room temperature or lower; thus facilitating the start of the vehicle in broad operating conditions. Interfaces showing a fast Li-ion transport will be developed in the project and partners will focus on developing intimate and (electro)-chemically stable interfaces with strong mechanical properties. The interfaces will be specifically designed to increase stability of the component and the malleable nature of the sulfide enables good interfacial contact.
SUBLIME will bring the sulfide electrolyte solid-state battery technology to TRL 6. The scale-up to pre-industrial volume will ensure that results are, indeed, scalable to large-volume commercial manufacturing. SUBLIME will deliver a roadmap to 2030, enabling eventual market entry by a very strong constellation of European partners, to bring about the transition towards electric
Status
SIGNEDCall topic
LC-BAT-1-2019Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies