MINOTOR | MagnetIc NOzzle thruster with elecTron cyclOtron Resonance

Summary
MINOTOR’s strategic objective is to demonstrate the feasibility of the ECRA technology as a disruptive game-changer in electric propulsion, and to prepare roadmaps paving the way for the 2nd EPIC call, in close alignment with the overall SRC-EPIC strategy.
Based on electron cyclotron resonance (ECR) as the sole ionization and acceleration process, ECRA is a cathodeless thruster with magnetic nozzle, allowing thrust vectoring. It has a considerable advantage in terms of global system cost, where a reduction of at least a factor of 2 is expected, and reliability compared to mature technologies. It is also scalable and can potentially be considered for all electric propulsion applications, from microsatellites to space tugs.
Although the first results obtained with ECRA have been encouraging, the complexity of the physics at play has been an obstacle for the understanding and development of the technology. Thus an in-depth numerical and experimental investigation plan has been devised for the project, in order to bring the technology from TRL3 to TRL5. The strong consortium is composed of academic experts to perform the research activities on ECRA, including alternative propellants, along with experienced industrial partners to quantify its disruptive advantages on the propulsion subsystem and its market positioning.
ECRA’s advantages as an electric thruster technology can be a disruptive force in a mostly cost-driven satellite market. It would increase European competitiveness, help develop low-cost satellite missions such as constellations, provide end-of-life propulsion, and pave the way for future emerging electric propulsion technologies.
The 36 months MINOTOR project requests a total EC grant of 1 485 809 M€ for an experienced consortium of 7 partners from 4 countries: ONERA (FR, Coordinator), industries Thales Alenia Space (BE), Thales Microelectronics (FR), SNECMA (FR), Universities Carlos III (ES) and Giessen (GE), and SME L-up (FR).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/730028
Start date: 01-01-2017
End date: 31-07-2020
Total budget - Public funding: 1 485 809,50 Euro - 1 485 809,00 Euro
Cordis data

Original description

MINOTOR’s strategic objective is to demonstrate the feasibility of the ECRA technology as a disruptive game-changer in electric propulsion, and to prepare roadmaps paving the way for the 2nd EPIC call, in close alignment with the overall SRC-EPIC strategy.
Based on electron cyclotron resonance (ECR) as the sole ionization and acceleration process, ECRA is a cathodeless thruster with magnetic nozzle, allowing thrust vectoring. It has a considerable advantage in terms of global system cost, where a reduction of at least a factor of 2 is expected, and reliability compared to mature technologies. It is also scalable and can potentially be considered for all electric propulsion applications, from microsatellites to space tugs.
Although the first results obtained with ECRA have been encouraging, the complexity of the physics at play has been an obstacle for the understanding and development of the technology. Thus an in-depth numerical and experimental investigation plan has been devised for the project, in order to bring the technology from TRL3 to TRL5. The strong consortium is composed of academic experts to perform the research activities on ECRA, including alternative propellants, along with experienced industrial partners to quantify its disruptive advantages on the propulsion subsystem and its market positioning.
ECRA’s advantages as an electric thruster technology can be a disruptive force in a mostly cost-driven satellite market. It would increase European competitiveness, help develop low-cost satellite missions such as constellations, provide end-of-life propulsion, and pave the way for future emerging electric propulsion technologies.
The 36 months MINOTOR project requests a total EC grant of 1 485 809 M€ for an experienced consortium of 7 partners from 4 countries: ONERA (FR, Coordinator), industries Thales Alenia Space (BE), Thales Microelectronics (FR), SNECMA (FR), Universities Carlos III (ES) and Giessen (GE), and SME L-up (FR).

Status

CLOSED

Call topic

COMPET-3-2016-b

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector
H2020-COMPET-2016
COMPET-3-2016-b SRC - In-Space electrical propulsion and station keeping - Disruptive Technologies
H2020-EU.2.1.6.1.1. Safeguard and further develop a competitive, sustainable and entrepreneurial space industry and research community and strengthen European non-dependence in space systems
H2020-COMPET-2016
COMPET-3-2016-b SRC - In-Space electrical propulsion and station keeping - Disruptive Technologies
H2020-EU.2.1.6.2. Enabling advances in space technology
H2020-COMPET-2016
COMPET-3-2016-b SRC - In-Space electrical propulsion and station keeping - Disruptive Technologies