NEXTOWER | Advanced materials solutions for next generation high efficiency concentrated solar power (CSP) tower systems

Summary
NEXTOWER shall introduce a set of innovative materials to boost the performance of atmospheric air-based concentrated solar power (CSP) systems to make them commercially viable. In particular, tower systems are appealing for the great environmental compatibility and offer tremendous potential for efficient (electrical and thermal) power generation. Yet, their industrial exploitation has been so far hindered by limitations in the materials used both for the central receiver - the core component - and for thermal storage. Such limitations dictate maximum working temperature and in-service overall durability (mainly driven by failure from thermal cycling and thermal shocks). Improving the efficiency of a tower system entails necessarily improving the central receiver upstream and possibly re-engineering the whole systems downstream to work longer and at much higher temperature, especially in the thermal storage compartment.

NEXTOWER will address this need by taking a comprehensive conceptual and manufacturing approach that will optimize bulk and joining materials for durability at the component level to achieve 25 years of maintenance-free continued service of the receiver and maximum thermodynamic efficiency at the system level. This is made possible through a unique combination of excellence in materials design and manufacturing, CSP full-scale testing facilities brought together in the Consortium, supporting the making of a full-size demo modules SOLEAD (tested in Spain and Italy) within the project. The successful achievement of a new generation of materials allowing for virtually maintenance free operations (limited to ceraminc parts) and increased working temperature shall result in the next-generation of air-coolant CSP highly competitive over other CSP alternatives and sustainable power supply options.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/721045
Start date: 01-01-2017
End date: 30-06-2021
Total budget - Public funding: 6 221 105,19 Euro - 4 981 304,00 Euro
Cordis data

Original description

NEXTOWER shall introduce a set of innovative materials to boost the performance of atmospheric air-based concentrated solar power (CSP) systems to make them commercially viable. In particular, tower systems are appealing for the great environmental compatibility and offer tremendous potential for efficient (electrical and thermal) power generation. Yet, their industrial exploitation has been so far hindered by limitations in the materials used both for the central receiver - the core component - and for thermal storage. Such limitations dictate maximum working temperature and in-service overall durability (mainly driven by failure from thermal cycling and thermal shocks). Improving the efficiency of a tower system entails necessarily improving the central receiver upstream and possibly re-engineering the whole systems downstream to work longer and at much higher temperature, especially in the thermal storage compartment.

NEXTOWER will address this need by taking a comprehensive conceptual and manufacturing approach that will optimize bulk and joining materials for durability at the component level to achieve 25 years of maintenance-free continued service of the receiver and maximum thermodynamic efficiency at the system level. This is made possible through a unique combination of excellence in materials design and manufacturing, CSP full-scale testing facilities brought together in the Consortium, supporting the making of a full-size demo modules SOLEAD (tested in Spain and Italy) within the project. The successful achievement of a new generation of materials allowing for virtually maintenance free operations (limited to ceraminc parts) and increased working temperature shall result in the next-generation of air-coolant CSP highly competitive over other CSP alternatives and sustainable power supply options.

Status

CLOSED

Call topic

NMBP-17-2016

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
H2020-EU.2.1.2.0. INDUSTRIAL LEADERSHIP - Nanotechnologies - Cross-cutting call topics
H2020-NMBP-2016-two-stage
NMBP-17-2016 Advanced materials solutions and architectures for high efficiency solar energy harvesting
H2020-EU.2.1.3. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
H2020-EU.2.1.3.0. Cross-cutting call topics
H2020-NMBP-2016-two-stage
NMBP-17-2016 Advanced materials solutions and architectures for high efficiency solar energy harvesting