GUTVIBRATIONS | GUT VIrus BRain Axis Technology In OrgaNoid Science

Summary
The battle against infectious diseases is hampered by lack of therapeutic innovations due to poor understanding of disease outcome in humans. Organoid technology is a major breakthrough for medical research that has traditionally relied heavily on animal models. In our current OrganoVIR consortium, we are at the forefront in establishing human organoids as superior models for viral pathogenesis and antiviral research. The next critical step is to integrate organoid models to create a complex multi-organ ex vivo model that better mimics the human physiology. This raises several challenges such as incorporation of various cell types, medium incompatibility, validation, high throughput, and robust ways to connect mature organoid models. At the same time, the model has to be accessible, user friendly, and affordable to all end users. Therefore, this proposed GUTVIBRATIONS consortium will leverage its expertise in microfabrication, organoid technology, virology, immunology, bioengineering, and materials science to deliver an enabling organ-on-chip system.

As a demonstrator, a modular human gut-brain axis multi-organ model will be achieved for studying viral disease and treatment. This model will be built by combining an open source 3D printed scaffold technology with human gut and brain organoid models. The deliverables will include a complex gut epithelial layer, immune cell layer, blood-brain layer and brain organoid; all individually developed and subsequently connected by vertical stacking. Our unique modular approach where individual components are separately developed and validated minimizes compatibility issues. The individual models and the multi-organ model will be used for studying three different clinically relevant viral infections with high global burden and will be validated against existing clinical data to bring the system to TRL5. Routes towards commercialization will also be assessed by performing a market analysis and developing a business plan.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/953201
Start date: 01-04-2021
End date: 31-03-2025
Total budget - Public funding: - 6 061 375,00 Euro
Cordis data

Original description

The battle against infectious diseases is hampered by lack of therapeutic innovations due to poor understanding of disease outcome in humans. Organoid technology is a major breakthrough for medical research that has traditionally relied heavily on animal models. In our current OrganoVIR consortium, we are at the forefront in establishing human organoids as superior models for viral pathogenesis and antiviral research. The next critical step is to integrate organoid models to create a complex multi-organ ex vivo model that better mimics the human physiology. This raises several challenges such as incorporation of various cell types, medium incompatibility, validation, high throughput, and robust ways to connect mature organoid models. At the same time, the model has to be accessible, user friendly, and affordable to all end users. Therefore, this proposed GUTVIBRATIONS consortium will leverage its expertise in microfabrication, organoid technology, virology, immunology, bioengineering, and materials science to deliver an enabling organ-on-chip system.

As a demonstrator, a modular human gut-brain axis multi-organ model will be achieved for studying viral disease and treatment. This model will be built by combining an open source 3D printed scaffold technology with human gut and brain organoid models. The deliverables will include a complex gut epithelial layer, immune cell layer, blood-brain layer and brain organoid; all individually developed and subsequently connected by vertical stacking. Our unique modular approach where individual components are separately developed and validated minimizes compatibility issues. The individual models and the multi-organ model will be used for studying three different clinically relevant viral infections with high global burden and will be validated against existing clinical data to bring the system to TRL5. Routes towards commercialization will also be assessed by performing a market analysis and developing a business plan.

Status

SIGNED

Call topic

DT-NMBP-23-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.4. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology
H2020-NMBP-TR-IND-2020-twostage
DT-NMBP-23-2020 Next generation organ-on-chip (RIA-LS)