SURPRISE | SUper-Resolved comPRessive InStrument in the visible and medium infrared for Earth observation applications

Summary
While Earth Observation (EO) data has become ever more vital to understanding the planet and addressing societal challenges, applications are still limited by revisit time and spatial resolution. Though low Earth orbit missions can achieve resolutions better than 100 m, their revisit time typically stands at several days, limiting capacity to monitor dynamic events. Geostationary (GEO) missions instead typically provide data on an hour-basis but with spatial resolution limited to 1 km, which is insufficient to understand local phenomena.
SURPRISE’s main objective is to implement a demonstrator of a super-spectral EO payload - working in the visible, near- and mid-infrared and conceived to operate from GEO platform - with enhanced capability in spatial resolution, onboard data processing and encryption functionalities.
SURPRISE develops two disruptive technologies: Compressive Sensing (CS) and Spatial Light Modulator (SLM). CS optimises data acquisition (e.g. reduced storage and transmission bandwidth requirements) and enables novel onboard processing and encryption functionalities. SLM here implements the CS paradigm and achieves a super-resolution architecture. SLM technology, at the core of the CS architecture, is addressed by: reworking and testing off-the-shelf parts in relevant environment; developing roadmap for a European SLM, micromirror array-type, with electronics suitable for space qualification.
By introducing for the first time the concept of a payload with medium spatial resolution (few hundreds of meters) and near continuous revisit (hourly), SURPRISE can lead to a EO major breakthrough and complement existing operational services. CS will address the challenge of large data collection, whilst onboard processing will improve timeliness, shortening time needed to extract information from images and possibly generate alarms. Impact is relevant to industrial competitiveness, with potential for market penetration of the demonstrator and its components.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/870390
Start date: 01-01-2020
End date: 30-06-2023
Total budget - Public funding: 2 988 795,00 Euro - 2 988 795,00 Euro
Cordis data

Original description

While Earth Observation (EO) data has become ever more vital to understanding the planet and addressing societal challenges, applications are still limited by revisit time and spatial resolution. Though low Earth orbit missions can achieve resolutions better than 100 m, their revisit time typically stands at several days, limiting capacity to monitor dynamic events. Geostationary (GEO) missions instead typically provide data on an hour-basis but with spatial resolution limited to 1 km, which is insufficient to understand local phenomena.
SURPRISE’s main objective is to implement a demonstrator of a super-spectral EO payload - working in the visible, near- and mid-infrared and conceived to operate from GEO platform - with enhanced capability in spatial resolution, onboard data processing and encryption functionalities.
SURPRISE develops two disruptive technologies: Compressive Sensing (CS) and Spatial Light Modulator (SLM). CS optimises data acquisition (e.g. reduced storage and transmission bandwidth requirements) and enables novel onboard processing and encryption functionalities. SLM here implements the CS paradigm and achieves a super-resolution architecture. SLM technology, at the core of the CS architecture, is addressed by: reworking and testing off-the-shelf parts in relevant environment; developing roadmap for a European SLM, micromirror array-type, with electronics suitable for space qualification.
By introducing for the first time the concept of a payload with medium spatial resolution (few hundreds of meters) and near continuous revisit (hourly), SURPRISE can lead to a EO major breakthrough and complement existing operational services. CS will address the challenge of large data collection, whilst onboard processing will improve timeliness, shortening time needed to extract information from images and possibly generate alarms. Impact is relevant to industrial competitiveness, with potential for market penetration of the demonstrator and its components.

Status

CLOSED

Call topic

LC-SPACE-14-TEC-2018-2019

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector
H2020-SPACE-2018
LC-SPACE-14-TEC-2018-2019 Earth observation technologies
H2020-SPACE-2019
LC-SPACE-14-TEC-2018-2019 Earth observation technologies
H2020-EU.2.1.6.2. Enabling advances in space technology
H2020-SPACE-2018
LC-SPACE-14-TEC-2018-2019 Earth observation technologies
H2020-SPACE-2019
LC-SPACE-14-TEC-2018-2019 Earth observation technologies