Summary
Context. Software quality is an essential competitive factor for the success of IT companies nowadays. Recent technological breakthroughs such as cloud technologies, the emergence of IoT and technologies such as 5¬G, pose demanding quality challenges in software development.
Problem. Optimal software quality asks for the appropriate integration of quality requirements (QRs) in the software life-cycle.However, software development methodologies still provide limited support to QR management which is utterly important in rapid software development processes (RSDP): faster and more frequent release cycles should not compromise software quality.
Concept. Q-Rapids defines an empirical-based, data-driven quality-aware rapid software development methodology. QRs are incrementally elicited and refined based on data gathered both during development and at runtime. This data is elaborated into quality-related key indicators presented to decision makers through a strategic dashboard with advanced capabilities. Selected QRs are integrated with functional requirements for their unified treatment in the RSDP.
Outcome. A TRL7 validated Q-Rapids framework, including cutting-edge tools and methods to smartly manage QRs along with functional requirements in a similar rapid and holistic manner.
Impact. Increase of software quality levels through continuous data gathering and analysis. Significant productivity increase to the software life-cycle by means of smooth and tool-supported integration of QRs in the RSDP. Shorter time to market due to reduction of quality-related maintenance efforts and more informed decision making in the planning of release cycles. Impact will be measured through 11 project indicators with defined target values.
Consortium. 3 research organisations,1 SME, 2 mid-caps and 1 corporative with balanced geographical distribution. The consortium combines long research tradition in software development and cutting-edge technological knowhow in versatile ICT sectors
Problem. Optimal software quality asks for the appropriate integration of quality requirements (QRs) in the software life-cycle.However, software development methodologies still provide limited support to QR management which is utterly important in rapid software development processes (RSDP): faster and more frequent release cycles should not compromise software quality.
Concept. Q-Rapids defines an empirical-based, data-driven quality-aware rapid software development methodology. QRs are incrementally elicited and refined based on data gathered both during development and at runtime. This data is elaborated into quality-related key indicators presented to decision makers through a strategic dashboard with advanced capabilities. Selected QRs are integrated with functional requirements for their unified treatment in the RSDP.
Outcome. A TRL7 validated Q-Rapids framework, including cutting-edge tools and methods to smartly manage QRs along with functional requirements in a similar rapid and holistic manner.
Impact. Increase of software quality levels through continuous data gathering and analysis. Significant productivity increase to the software life-cycle by means of smooth and tool-supported integration of QRs in the RSDP. Shorter time to market due to reduction of quality-related maintenance efforts and more informed decision making in the planning of release cycles. Impact will be measured through 11 project indicators with defined target values.
Consortium. 3 research organisations,1 SME, 2 mid-caps and 1 corporative with balanced geographical distribution. The consortium combines long research tradition in software development and cutting-edge technological knowhow in versatile ICT sectors
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/732253 |
Start date: | 01-11-2016 |
End date: | 31-10-2019 |
Total budget - Public funding: | 4 997 590,00 Euro - 4 997 590,00 Euro |
Cordis data
Original description
Context. Software quality is an essential competitive factor for the success of IT companies nowadays. Recent technological breakthroughs such as cloud technologies, the emergence of IoT and technologies such as 5¬G, pose demanding quality challenges in software development.Problem. Optimal software quality asks for the appropriate integration of quality requirements (QRs) in the software life-cycle.However, software development methodologies still provide limited support to QR management which is utterly important in rapid software development processes (RSDP): faster and more frequent release cycles should not compromise software quality.
Concept. Q-Rapids defines an empirical-based, data-driven quality-aware rapid software development methodology. QRs are incrementally elicited and refined based on data gathered both during development and at runtime. This data is elaborated into quality-related key indicators presented to decision makers through a strategic dashboard with advanced capabilities. Selected QRs are integrated with functional requirements for their unified treatment in the RSDP.
Outcome. A TRL7 validated Q-Rapids framework, including cutting-edge tools and methods to smartly manage QRs along with functional requirements in a similar rapid and holistic manner.
Impact. Increase of software quality levels through continuous data gathering and analysis. Significant productivity increase to the software life-cycle by means of smooth and tool-supported integration of QRs in the RSDP. Shorter time to market due to reduction of quality-related maintenance efforts and more informed decision making in the planning of release cycles. Impact will be measured through 11 project indicators with defined target values.
Consortium. 3 research organisations,1 SME, 2 mid-caps and 1 corporative with balanced geographical distribution. The consortium combines long research tradition in software development and cutting-edge technological knowhow in versatile ICT sectors
Status
CLOSEDCall topic
ICT-10-2016Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all