Summary
The NRG-STORAGE project will launch a novel breakthrough solution that replaces the currently available insulation materials used in building envelopes, by proposing a multi-functional and eNeRGy saving cementitious Foam (NRG-Foam). The heat-activated foam will be used for passive/active management of energy transfer and will be applied to new building envelopes and to retrofit existing ones. Graphene-based nano-additives will be doped in both cementitious foam matrix and bio-based PCM fraction for improving the thermal storage capacity, volume stability and mechanical properties of the resulting composite. Two active/passive systems will be prototyped and validated. First, an implicit heating system for thermal activation of the added nano-graphene will be installed representing a material-based approach, and, second, a multi-functional energy efficient façade system (MeeFS) will be installed, to diverse and direct the thermal absorption capacity and shadowing of the external building walls for optimizing the NRG-Foam’s.
NRG-Foam composites will be optimized to achieve the best compromise between thermal insulating properties (air bubbles) and heat storage capacity (bio-PCMs). A highly conductive cementitious paste will be designed and produced, targeting on an increase in thermal conductivity (once activated up to 10 times for bio-PCM, and 2 times for cement matrix), and an enhanced efficiency of bio-PCM heat storing performance (> 5 times). With this project, the partners will develop an innovative functional material that combines high insulation capabilities (more than 25% of classical layers) and high energy-storage capacity (more than 10% of improvement in active applications). Furthermore, the NRG-Foam layer will be characterized by a high water and air tightness (between 10% and 25% higher than existing solutions) and at least 15% lower costs than the actual solutions available in Europe for insulation purposes of non-residential buildings.
NRG-Foam composites will be optimized to achieve the best compromise between thermal insulating properties (air bubbles) and heat storage capacity (bio-PCMs). A highly conductive cementitious paste will be designed and produced, targeting on an increase in thermal conductivity (once activated up to 10 times for bio-PCM, and 2 times for cement matrix), and an enhanced efficiency of bio-PCM heat storing performance (> 5 times). With this project, the partners will develop an innovative functional material that combines high insulation capabilities (more than 25% of classical layers) and high energy-storage capacity (more than 10% of improvement in active applications). Furthermore, the NRG-Foam layer will be characterized by a high water and air tightness (between 10% and 25% higher than existing solutions) and at least 15% lower costs than the actual solutions available in Europe for insulation purposes of non-residential buildings.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/870114 |
Start date: | 01-04-2020 |
End date: | 30-06-2024 |
Total budget - Public funding: | 6 846 750,00 Euro - 5 602 934,00 Euro |
Cordis data
Original description
The NRG-STORAGE project will launch a novel breakthrough solution that replaces the currently available insulation materials used in building envelopes, by proposing a multi-functional and eNeRGy saving cementitious Foam (NRG-Foam). The heat-activated foam will be used for passive/active management of energy transfer and will be applied to new building envelopes and to retrofit existing ones. Graphene-based nano-additives will be doped in both cementitious foam matrix and bio-based PCM fraction for improving the thermal storage capacity, volume stability and mechanical properties of the resulting composite. Two active/passive systems will be prototyped and validated. First, an implicit heating system for thermal activation of the added nano-graphene will be installed representing a material-based approach, and, second, a multi-functional energy efficient façade system (MeeFS) will be installed, to diverse and direct the thermal absorption capacity and shadowing of the external building walls for optimizing the NRG-Foam’s.NRG-Foam composites will be optimized to achieve the best compromise between thermal insulating properties (air bubbles) and heat storage capacity (bio-PCMs). A highly conductive cementitious paste will be designed and produced, targeting on an increase in thermal conductivity (once activated up to 10 times for bio-PCM, and 2 times for cement matrix), and an enhanced efficiency of bio-PCM heat storing performance (> 5 times). With this project, the partners will develop an innovative functional material that combines high insulation capabilities (more than 25% of classical layers) and high energy-storage capacity (more than 10% of improvement in active applications). Furthermore, the NRG-Foam layer will be characterized by a high water and air tightness (between 10% and 25% higher than existing solutions) and at least 15% lower costs than the actual solutions available in Europe for insulation purposes of non-residential buildings.
Status
SIGNEDCall topic
LC-EEB-01-2019Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.5. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing